18.100B/C. Test 2. April 26, 2007, 7:30-8:30PM

Problem 1. Suppose that f is Riemann integrable on [0, 1] with fol fdx = 1. Show that
there exists some ¢ € (0, 1) such that foc fdx = %
Solution. Define g(x) = [, f(t)dt. By the fundamental theorem of calculus, g is continuous
on [0,1]. Then g maps the connected set [0, 1] into a connected set, an interval, and since
9(0) = 0, and g(1) = 1, there must exist ¢ € (0,1) such that g(c) = 1 (intermediate value

property).

Problem 2. Suppose that f : R? — R is continuous and bounded. Show that the set

{(z,y) € R% f(z,y) = 2* +y°}
is a compact subset of R2.

Solution. Define g(x,y) = f(x,y)—(z*+y?*). Then our set, callit F, is E = g~'({0}). Since
f is continuous and polynomials are continuous, g is continuous (being a sum of continuous
functions). Then g~'({0}) is closed (inverse image of a closed set).

Let M be such that |f(x,y)| < M for all (z,y). If (z,y) € E, then z* + y* < M, which
means that F is a subset of the disk 22 + y? < M, therefore bounded. So F is closed and
bounded in R?, and by Heine-Borel it is compact.

Problem 3. Let X be a metric space with non-empty subsets K C X compact and
F C X closed which are disjoint, K N F = ().

(a) Show that there exists ¢ > 0 such that
d(p,q) >eVpe K, qe F.

(b) Give an example of two nonempty disjoint closed sets in a metric space for which
this conclusion fails.

Solution. (a) Proof 1. Assume by contradiction that for every e = %, there exist p, €
K,q, € F such that d(p,,q,) < 1. The sequence {p,} C K must have a convergent subse-
quence since K is compact. Let {p,, } — p € K be this subsequence. From d(py,, ¢, ) — 0
and d(p,,,p) — 0, as k — oo, we deduce that {g,, } C F converges to p. Because, F' is
closed, this implies that p € F, contradiction with K N F = ().

Proof 2: Define the function dr : K — R, dr(p) = inf,er d(p, q). First, dp(p) > 0, for all
p. (Assume dp(p) = 0, then there exists a sequence {g,} C F, such that lim,_ d(p, ¢,) = 0.
Since F is closed, it follows p € F, contradiction with K N F = ().)

Secondly, dr is continuous, in fact Lipschitz. Note that dg(p') = inf,ep d(p', q) < inf,ep(d(p’, p)+
d(p,q)) = d(p',p) + dr(p). It follows that for every p,p’ € K, we have |dr(p) — dp(p')| <
d(p,p').

Since K is compact, dp(K) is compact. But dp(K) C (0,00), so there must exist € > 0,
such that dp(K) C [€,00).

(b) Take Fj to be the graph of e* and F), to be the z-axis.



Problem 4. Let f : R — R be differentiable at every point and satisfy
f(=10) =1, f(0) =0, f(10) =1.
Show that there exists a point € R such that f'(z) = v/2/100.
Solution. Apply the mean value theorem twice, on [—10,0], respectively [0, 10]. There
exists points z; € (—10,0) and x5 € (0, 10), such that f'(z;) = —%, and f'(xq) = %. Now
—L < M2 1 g by the intermediate value property of the derivative, there must exist

10 100 10°
x € (x1,xq), such that f'(z) = %.
Problem 5. Let f and g be bounded real-valued functions on an interval [a,b] with
f(z) < g(z) for all € [a,b]. Let « : [a,b] — R be a monotonic increasing function such
that for every € > 0 there exist partitions P_ and P, of [a, b] such that

U(P-l-vgu Oé) < L(P—u f7 Oé) +e
Show that f and ¢ are both Riemann-Stieltjes integrable with respect to o on |a, b].

Solution. Let ¢ > 0 be given. Since f(z) < g(z), for every partition P, we have
Then U(P,,g,a) < L(P_,g,«) + €. Put P* =P, UP_. Then

L(P_,g,a) < L(P*,g,c) < U(P*,g9,0) < U(P+,g,),

by the properties of the refinement. So U(P*, g,a) — L(P*, g, ) < €, which is the criterion
for integrability for g.
The proof for f is the same.



