
18.100B, SPRING 2004
FINAL EXAM: MAY 20

R. MELROSE

This exam is closed book, no books, papers or recording devices permitted. You
may use theorems from class, or the book, provided you can recall them correctly.
This includes standard properties of the exponential and trigonometric functions.
Remember, the thing I want to see most is clarity! The problems are worth 11
point each, except the last one which is worth 12.

Problem 1

Show that the set {z ∈ C; z = cos(eit3+t2) for some t ∈ R} is connected.
Hint: This is the image of the real line under a continuous map into C.

Problem 2

Let X be a compact metric space and let f : X −→ Y be a map to another
metric space Y. Show that f is continuous if and only if f−1(S) ⊂ X is compact
for each closed set S ⊂ Y.

Hint: We know that f is continuous iff f−1(S) ⊂ X is closed for each S ⊂ Y
which is closed. If X is compact then f−1(S) ⊂ X is compact if and only if it is
closed.

Problem 3

(1) Show that the function f(x) = exp( x3−x
x2+x+1 ) is continuously differentiable

on [0, 1].
(2) Prove that there is a point x0 ∈ (0, 1) at which f ′(x0) = 0.

Hint: Since x2+x+1 ≥ 1 for x ∈ [0, 1], the rational function (x3−x)/(x2+x+1)
is continuously differentiable on [0, 1] and hence so is f by the chain rule and the
differentiability of exp . Clearly f(0) = 1 and f(1) = 1 so apply the mean value
theorem.

Problem 4

Let f : R −→ R be twice differentiable and suppose that 0 is a local maximum
of f, i.e. for some ε > 0 f(x) ≤ f(0) for all x ∈ (−ε, ε). Show that f ′′(0) ≤ 0.

Hint: Since 0 is a local maximum, f ′(0) = 0. Since f is twice differentiable f ′

is continuous. If f ′′(0) > 0 then f ′(x) > 0 for 0 < x ≤ ε for some ε > 0, since
the difference quotient f ′(x)/x converges to a f ′′(0) > 0 as x → 0. Then, by the
mean value theorem f(ε)− f(0) = εf ′(x) > 0 for some x ∈ (0, ε) so 0 is not a local
maximum.
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Problem 5

Let gn : [0, 1] −→ R be a sequence of differentiable functions such that the
sequence g′n : [0, 1] −→ R is uniformly bounded.

(1) Give an example of such a sequence which is not pointwise bounded.
(2) Show that if

∫ 1

0
gndx is a bounded sequence in R then gn has a uniformly

convergent subsequence.
Hint: The sequence of constants gn(x) = n is an example. The uniform bound-

edness of the g′n implies the equicontinuity of the sequence gn by the mean value
theorem – so we only need to show its boundedness to deduce the existence of uni-
formly convergent subsequence from a standard theorem. So we need to show for
instance that gn(0) is a bounded sequence. By the mean value theorem as before,
gn(x)−gn(0) is bounded independent of x and n, say by A. If gn(0) is unbounded, it
follows that on some subsequence (without changing notation) either gn(0) ≥ Cn or
gn(0) ≤ −Cn where Cn →∞. Then either then gn(x) ≥ Cn−A or gn(x) ≤ −Cn+A
which implies that

∫ 1

0
gn(x)dx is unbounded. Thus the sequence must be uniformly

bounded and hence there is a uniformly convergent subsequence.

Problem 6

Using standard properties of the cosine function show that the series

f(x) =
∞∑

n=1

1
n3

cos(nx)

defines a continuously differentiable function on the real line.
Hint: | cos(nx)| ≤ 1 so comparison with the convergent series

∑
n≥1

n−3 shows

this series to be uniformly convergent on the real line. For the term-by-term de-
rivative convergence follows by comparison with n−2 so the series of derivatives
also converges uniformly, hence by a standard theorem the limit is continuously
differentiable.

Problem 7

(1) Explain carefully why the Riemann-Stieltjes integral∫ 1

−1

exp(3x2)dα

exists for any increasing function α : [−1, 1] −→ R.
(2) Evaluate this integral when

α =

{
0 x < 0
1 x ≥ 0.

Hint. The Riemann-Stieltjes integral exists on [a, b] for any increasing α and
any continuous function and exp(3x2) is continuous as the composite of continuous
functions, namely exp and a polynomial. The continuity of exp follows from the
definition as the sum of a power series with radius of convergence +∞. Since α
is constant except for the jump of size 1 at 0 the uppoer and lower partial sums
for a partition in which 0 is the interior of an interval I are supI f and infI f. By
continuity these approach the same value, 1 as the length of I decreases. Thus the
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integral is 1. This also follows from a theorem in Rudin that covers cases where α
has only a finite jump.

Problem 8

Let f : X −→ R be a continuous function on a compact metric space, X. If {xn}
is a sequence in X show that {f(xn)} has a convergent subsequence with limit in
f(X).

Hint: Since X is compact, {xn} has a convergent subsequence {xnk
} with limit

x ∈ X. Since f is continuous, f(xnk
)→ f(x).

Problem 9

Let fn : [0, 1] −→ R, n ∈ {0, 1, . . . }, be the sequence of functions defined by

f0(x) = 1 ∀ x ∈ [0, 1]

fn+1(x) =
∫ x

0

fn(s)ds ∀ x ∈ [0, 1], n ≥ 0.

(1) Show that each fn is continuous and evaluate fn(0).
(2) Show that for each n ≥ 0 and x, y ∈ [0, 1],

|fn+1(x)− fn+1(y)| ≤ |x− y| sup
s∈[0,1]

|fn(s)|.

(3) Deduce that fn is a uniformly bounded and equicontinuous family.
(4) Show that {fn} has a convergent subsquence.
(5) Prove that the limit, f, of such a subsequence satisfies

f(x) =
∫ x

0

f(s)ds ∀ x ∈ [0, 1]

and hence, or otherwise, deduce that f(x) = 0 identically on [0, 1].
Hint: The cheapest way is to carry out the integrals, realizing that

fn(x) = xn/n!. Otherwise one can work harder.


