
18.100B Practice for the final exam
Solutions.

Problems.
1) i) Let M be a metric space, state the definition of equicontinuity of a subset E ⊆ C (M, R).

Solution. See Definition 7.22 in Rudin.

ii) Show that if E ⊆ C (M, R) is compact, then it is equicontinuous. (You may not use the
Arzela-Ascoli theorem.) Typo: Should say that M is compact.
Solution. Let ε > 0 be given. Find a finite cover of E by balls of radius ε,

E ⊆ Bε (f1) ∪ . . . ∪Bε (fn) .

Each fi is uniformly continuous, so there is a δi > 0 such that whenever x, y ∈ M and
d (x, y) < δi we have |fi (x) − fi (y) | < ε. Let δ = min{δ1, . . . , δn}, note that if x, y ∈ M
satisfy d (x, y) < δ and f ∈ E, then f ∈ Bε (fj) for some j and

|f (x)− f (y) | ≤ |f (x)− fj (x) |+ |fj (x)− fj (y) |+ |fj (y)− f (y) | < 3ε.

Hence E is equicontinuous.

2) If S ⊆ Rn, show that the collection of isolated points of S is countable.
Solution. Let S denote the set of isolated points. For every s ∈ S choose a neighborhood U(s)
in Rn such that U ∩ S = {s} and so that U(s) ∩ U(t) = ∅ if s 6= t. Use that Qn is dense in Rn

to choose a point in each U(s) with rational coordinates. This defines an injective map S → Qn

and proves that S is countable.

3) i) Prove that ifM and N are metric spaces and g : M→N is a uniformly continuous function,
then whenever (xn) ⊆M is Cauchy, the sequence (g (xn)) is Cauchy.
Solution. Let ε > 0 find δ > 0 so that d(x, y) < δ =⇒ d(g(x), g(y)) < ε, find N ∈ N
such that n, m > N =⇒ d(xn, xm) < δ and note that hence, for any n, m > N we have
d(g(xn), g(xm)) < ε.

ii) Let M and N be metric spaces, let A ⊆ M and let A ⊆ M denote the closure of A. If N
is complete and h : A → N is uniformly continuous, prove that there is a unique continuous
function h̃ : A → N such that h̃ (a) = h (a) for every a ∈ A.
Solution. For any a ∈ A, choose (an) ⊂ A such that an → a and define

h̃ (a) = lim
n→∞

h (an) .

This limit exists because (an) Cauchy implies (h (an)) Cauchy and N is complete. Also note
that the limit is independent of the choice of sequence (an) converging to a; if (bn) is another
sequence in A converging to a then by considering the sequence a1, b1, a2, b2, . . . we see that
the limits coincide. We need to see that h̃ is continuous. Let ε > 0 find δ > 0 using uniform
continuity so that a, b ∈ A, d(a, b) < δ implies d(h(a), h(b)) < ε. If x ∈ A, an → x so that
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for some N ∈ N, n > N implies d (f(x), f(an)) < ε and we pick any point b ∈ Bδ/2 (x) ∩ A
then there is a am ∈ Bδ/2 (x) with m > N hence

|h̃ (x)− h̃ (b) | ≤ |h̃ (x)− h̃ (am) |+ |h̃ (am)− h̃ (b) | < 2ε.

Similarly, if c ∈ Bδ/2 (x)∩A then |h̃ (x)−h̃ (c) | < 3ε and hence h̃ is continuous on A. Finally,
since any continuous function on A must satisfy the boxed equation above, the extension is
unique.

4) Assume f : (a, b) → R has derivative at every point in (a, b). Let c ∈ (a, b) and assume that

lim
x→c

f ′ (x)

exists and is finite. Prove that the value of this limit must be f ′ (c).
Solution. See Pset 8, question 5.

5) Assume f , g, and h are real-valued functions defined on [0, 1] and g ≥ 0 is in R (x).
i) Prove that if f is continuous, there exists w ∈ [0, 1] such that∫ 1

0
f (t) g (t) dt = f (w)

∫ 1

0
g (t) dt

Hint: Use the intermediate value theorem.
Solution. Notice that(

min
[0,1]

f

)∫ 1

0
g (t) dt ≤

∫ 1

0
f (t) g (t) dt ≤

(
max
[0,1]

f

)∫ 1

0
g (t) dt

so the problem follows from the intermediate value theorem (using continuity of f).

ii) Prove that if h is monotone increasing (not necessarily continuous), there exists z ∈ [0, 1]
such that ∫ 1

0
h (t) g (t) dt = h (0)

∫ z

0
g (t) dt + h (1)

∫ 1

z
g (t) dt

Hint: Use the intermediate value theorem, but make sure to justify continuity.
Solution. Let

Φ (x) = h (0)
∫ x

0
g (t) dt + h (1)

∫ 1

x
g (t) dt,

g integrable implies Φ continuous. On the other hand, since h(0) < h(1), minΦ = Φ(1) and
max Φ = Φ(0). Finally, since h is monotone increasing

min
[0,1]

Φ = h (0)
∫ 1

0
g (t) dt ≤

∫ 1

0
h (t) g (t) dt ≤ h (1)

∫ 1

0
g (t) dt = max

[0,1]
Φ

so the problem follows from the intermediate value theorem applied to Φ.
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6) Let S = {n1, n2, . . . , } denote the collection of those positive integers that do not involve the
digit 3 in their decimal representation. (For example, 7 ∈ S, but 131 /∈ S.) Show that

∑ 1
nk

converges and has sum less than 90.
Hint: If m has ` digits, then 1

m ≤ 1
10`−1 . How many elements of S have ` digits?

Solution. If s ∈ S has exactly ` digits then the first digit can be anything other than 0 or 3
(8 possibilities) and the other digits can be anything other that 3 (9 possibilities) thus there are
8 · (9)`−1 such numbers. That means that∑

nk∈S

1
nk

< 8
∑
`≥1

9`−1

10`−1
= 8

∞∑
`=0

(
9
10

)`

=
8

1− 9
10

= 80.

7) Assume that (gn) is a sequence of real-valued functions defined on T ⊆ R satisfying gn+1 (x) ≤
gn (x) for each x ∈ T and n ∈ N, and suppose that gn → 0 uniformly on T . Show that

∞∑
n=1

(−1)n+1 gn (x)

converges uniformly on T .
Solution. Define

Gk (x) =
k∑

n=1

(−1)n+1 gn (x)

and note that if 2` < k

Gk (x) = G2` (x) + (g2`+1 (x)− g2`+2 (x)) + (g2`+3 (x)− g2`+4 (x)) + . . .± gk (x) ≥ G2` (x)

and if 2` + 1 < k then

Gk (x) = G2`+1 (x)− (g2`+1 (x)− g2`+2 (x))− (g2`+3 (x)− g2`+4 (x))− . . .± gk (x) ≤ G2`+1 (x) .

Let ε > 0, find N ∈ N such that n > N implies ‖gn‖ < ε then if s, t > 2n + 1 we have

G2n (x) ≤ Gs (x) ≤ G2n+1 (x) , and G2n (x) ≤ Gt (x) ≤ G2n+1 (x)

hence
|Gs (x)−Gt (x)| ≤ |G2n+1 (x)−G2n (x)| = |g2n+1 (x)| < ε

which proves that Gs is uniformly Cauchy and hence uniformly convergent.

8) Consider a continuous function f : [0,∞) → R. For each n define the continuous function
fn : [0,∞) → R by fn (x) = f (xn). Show that the set of continuous functions {f1, f2, . . .} is
equicontinuous on some interval containing x = 1 if and only if f is a constant function.
Solution. Let I be an interval containing 1, let ε > 0 and let δ > 0 be such that x, y ∈ I,
|x − y| < δ implies fn (x) − fn (y) | < ε. Thus if |x − 1| < δ then |f(1) − f(xn)| < ε for every
n ∈ N. Choose an x < 1 to see that |f(1)− f(0)| ≤ ε and since ε > 0 was arbitrary f(1) = f(0).
For any z ∈ (0,∞), choose large enough N so that |z

1
N − 1| < δ and hence |f(1)− f(z)| < ε, but

since ε was arbitary f(z) = f(1).
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9) Define, for any z ∈ R, the exponential function by

exp (z) =
∞∑

k=0

zk

k!
.

i) Prove that exp : R → R is a continuous function.
Solution. The partial sums are continuous functions that converge uniformly on any com-
pact set (e.g., by the ratio test) and hence the limit function is continuous.

ii) Use the binomial theorem

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

to prove exp (z + w) = exp (z) exp (w). Be sure to justify your steps.
Solution. Note that the series converges absolutely.

exp (z + w) =
∞∑

n=0

(z + w)n

n!
=

∞∑
n=0

1
n!

n∑
k=0

(
n

k

)
zkyn−k

=
∞∑

n=0

n∑
k=0

zk

k!
yn−k

(n− k)!
=

( ∞∑
k=0

zk

k!

)( ∞∑
`=0

y`

`!

)
= exp (z) exp (w)

The first equality is by definition of exp, the second uses the binomal theorem, the third the
definition of

(
n
k

)
, the fourth uses absolute convergence to rearrange the summands and the

last uses definition of exp again.

iii) Prove that exp′ (z) = exp (z). Be sure to justify your steps.
Solution. Denote by Sn (z) the partial sums of exp z and note that (Sn (z))′ = Sn−1 (z) and
hence (Sn (z))′ converges uniformly. It follows that exp z is differentiable with derivative

exp′(z) = lim
n

(Sn (z))′ = lim
n

Sn−1 (z) = exp (z) .


