1)

18.100B Practice for the final exam

Solutions.

Problems.

i)

i)

Let M be a metric space, state the definition of equicontinuity of a subset £ C C' (M, R).
Solution. See Definition 7.22 in Rudin.

Show that if £ C C'(M,R) is compact, then it is equicontinuous. (You may not use the
Arzela-Ascoli theorem.) Typo: Should say that M is compact.
Solution. Let € > 0 be given. Find a finite cover of E by balls of radius ¢,

Eng(fl)U"-UBs(fn)'

Each f; is uniformly continuous, so there is a §; > 0 such that whenever z,y € M and
d(z,y) < d§; we have |f; (z) — fi (y)| < e. Let 6 = min{dy,...,d,}, note that if x,y € M
satisfy d (z,y) < ¢ and f € E, then f € B, (f;) for some j and

[f @)= F W <[ @)= f @) [+ 15 @) = f @) [+1£5 () = Fy) | < 3e.

Hence FE is equicontinuous.

2) If S C R", show that the collection of isolated points of S is countable.

Solution. Let S denote the set of isolated points. For every s € S choose a neighborhood U(s)
in R™ such that &4 NS = {s} and so that U(s) NU(t) = 0 if s # t. Use that Q" is dense in R"
to choose a point in each U(s) with rational coordinates. This defines an injective map S — Q"
and proves that S is countable.

3)

i)

ii)

Prove that if M and N are metric spaces and g : M — N is a uniformly continuous function,
then whenever (z,) C M is Cauchy, the sequence (g (x,)) is Cauchy.

Solution. Let e > 0 find § > 0 so that d(z,y) < 0 = d(g9(z),9(y)) < ¢, find N € N
such that n,m > N = d(xn,x,) < 0 and note that hence, for any n,m > N we have

d(g(l‘n)?g(l‘m)) <eE.

Let M and N be metric spaces, let A € M and let A C M denote the closure of A. If N

is complete and h: A — N is uniformly continuous, prove that there is a unique continuous
function h : A — N such that h(a) = h (a) for every a € A.
Solution. For any a € A, choose (a,) C A such that a,, — a and define

h(a) = im £ (ay) |

n

This limit exists because (a,,) Cauchy implies (h (a,)) Cauchy and N is complete. Also note
that the limit is independent of the choice of sequence (a,) converging to a; if (b,,) is another
sequence in A converging to a then by considering the sequence ay, b1, az, ba, ... we see that
the limits coincide. We need to see that h is continuous. Let € > 0 find § > 0 using uniform
continuity so that a,b € A, d(a,b) < § implies d(h(a),h(b)) < e. If z € A, a, — x so that



for some N € N, n > N implies d (f(z), f(an)) < € and we pick any point b € Bj/, (z) N A
then there is a a, € Bs/p (z) with m > N hence
(B () =R ()| < |7 (x) = T (am) | + [ (am) = 1 (b) | < 2e.

Similarly, if ¢ € Byjy ()N A then |h (z)—h (¢)| < 3¢ and hence h is continuous on A. Finally,

since any continuous function on A must satisfy the boxed equation above, the extension is
unique.

4) Assume f : (a,b) — R has derivative at every point in (a,b). Let ¢ € (a,b) and assume that

lim /' (2)

exists and is finite. Prove that the value of this limit must be f’ (c).
Solution. See Pset 8, question 5.

5) Assume f, g, and h are real-valued functions defined on [0,1] and ¢ > 0 is in R ().

i)

ii)

Prove that if f is continuous, there exists w € [0, 1] such that

1 1
/f(t)g(t) dt:f(w)/ g(t) dt
0 0

Hint: Use the intermediate value theorem.
Solution. Notice that

(%,ifff> /Olg(t) dtﬁ/olf(t)g(t) dt < <r[r5aﬁ<f> /Olg(t) dt

so the problem follows from the intermediate value theorem (using continuity of f).

Prove that if h is monotone increasing (not necessarily continuous), there exists z € [0, 1]

such that
1

1 z
/Oh(t)g(t) dt:h(O)/O g (@) dt+h(1)/ g (t) dt

4
Hint: Use the intermediate value theorem, but make sure to justify continuity.

Solution. Let
1

<I><x>—h<o>/0xg<t> d+h) [ g .

g integrable implies ® continuous. On the other hand, since h(0) < h(1), min ® = ®(1) and
max & = ®(0). Finally, since h is monotone increasing

1 1 1
%’IEQZh(O)/O g () dtg/o h(t)g(t) dtgh(l)/o g(t) dtzr[%’zﬁ((l)

so the problem follows from the intermediate value theorem applied to .
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6) Let S = {ny,ng,...,} denote the collection of those positive integers that do not involve the
digit 3 in their decimal representation. (For example, 7 € S, but 131 ¢ S.) Show that > n—lk
converges and has sum less than 90.

Hint: If m has £ digits, then % < 10[ -. How many elements of S have ¢ digits?

Solution. If s € S has exactly ¢ digits then the first digit can be anything other than 0 or 3
(8 possibilities) and the other digits can be anything other that 3 (9 possibilities) thus there are
8- (9)°! such numbers. That means that

g¢-1 = 79\ 8
Z 8210[1: Z(l()) :1_2:80'
nkES >1 =0 10

7) Assume that (g,) is a sequence of real-valued functions defined on 7' C R satisfying gn41 (z) <
gn (x) for each x € T and n € N, and suppose that g, — 0 uniformly on 7. Show that
(e.9]
S (1) gy (2)
n=1
converges uniformly on T'.
Solution. Define

k
Z n+1 )
n=1

and note that if 2¢ < k

G (z) = Gog () + (92041 () — gaes2 (7)) + (92043 (%) — gora () + ... £ g (2) > Gop (2)
and if 2¢ +1 < k then

G (%) = Gart1 (2) — (92041 () — g2e42 () — (92043 () — g4 () — . £ gk (2) < Gopya (7).
Let € > 0, find N € N such that n > N implies ||g,| < ¢ then if s,¢ > 2n + 1 we have

Gon () < G (x) < Gopg1(x), and  Gaop(z) < Gi(x) < Gopga ()

hence
|Gs (2) = Gi (2)] < [Gantr (2) — Gan (2)] = [g2n41 (z)] <€
which proves that G5 is uniformly Cauchy and hence uniformly convergent.

8) Consider a continuous function f : [0,00) — R. For each n define the continuous function
fn 2 [0,00) — R by f(z) = f(2"). Show that the set of continuous functions {fi, fa,...} is
equicontinuous on some interval containing z = 1 if and only if f is a constant function.
Solution. Let I be an interval containing 1, let € > 0 and let § > 0 be such that x,y € I,
|z — y| < § implies f,, (x) — fn (y)| < &. Thus if |z — 1| < § then |f(1) — f(z™)] < e for every
n € N. Choose an z < 1 to see that |f(1) — f(0)| < € and since € > 0 was arbitrary f(1) = f(0).
For any z € (0,00), choose large enough N so that ]2% — 1| < ¢ and hence |f(1) — f(2)| < &, but
since € was arbitary f(z) = f(1).



9) Define, for any z € R, the exponential function by

i)

ii)

iii)

() =35

Prove that exp : R — R is a continuous functlon.
Solution. The partial sums are continuous functions that converge uniformly on any com-
pact set (e.g., by the ratio test) and hence the limit function is continuous.

Use the binomial theorem

(x+y)" = En: <k>mky” g

k=0
to prove exp (z + w) = exp (z) exp (w). Be sure to justify your steps.
Solution. Note that the series converges absolutely.

exp(erw):f: z+w anz<>knk

n=0
12
EE i (51) (£4) o

The first equality is by definition of exp, the second uses the binomal theorem, the third the
definition of (Z), the fourth uses absolute convergence to rearrange the summands and the
last uses definition of exp again.

Prove that exp’ (2) = exp (z). Be sure to justify your steps.
Solution. Denote by S, (2) the partial sums of exp z and note that (S, (z)) = S,_1 () and
hence (S, (z)) converges uniformly. It follows that exp z is differentiable with derivative

exp/(2) = lim (S, (2))' = lim S, (=) = exp ().



