18.100B Practice for the final exam Solutions.

Problems.

- 1)i) Let \mathcal{M} be a metric space, state the definition of equicontinuity of a subset $E \subseteq C(\mathcal{M}, \mathbb{R})$. Solution. See Definition 7.22 in Rudin.
 - ii) Show that if $E \subseteq C(\mathcal{M}, \mathbb{R})$ is compact, then it is equicontinuous. (You may not use the Arzela-Ascoli theorem.) Typo: Should say that \mathcal{M} is compact. **Solution.** Let $\varepsilon > 0$ be given. Find a finite cover of E by balls of radius ε ,

$$E \subseteq B_{\varepsilon}(f_1) \cup \ldots \cup B_{\varepsilon}(f_n).$$

Each f_i is uniformly continuous, so there is a $\delta_i > 0$ such that whenever $x, y \in \mathcal{M}$ and $d(x,y) < \delta_i$ we have $|f_i(x) - f_i(y)| < \varepsilon$. Let $\delta = \min\{\delta_1, \ldots, \delta_n\}$, note that if $x, y \in \mathcal{M}$ satisfy $d(x, y) < \delta$ and $f \in E$, then $f \in B_{\varepsilon}(f_j)$ for some j and

 $|f(x) - f(y)| \le |f(x) - f_j(x)| + |f_j(x) - f_j(y)| + |f_j(y) - f(y)| < 3\varepsilon.$

Hence E is equicontinuous.

- 2) If $S \subseteq \mathbb{R}^n$, show that the collection of isolated points of S is countable. **Solution.** Let S denote the set of isolated points. For every $s \in S$ choose a neighborhood $\mathcal{U}(s)$ in \mathbb{R}^n such that $\mathcal{U} \cap S = \{s\}$ and so that $\mathcal{U}(s) \cap \mathcal{U}(t) = \emptyset$ if $s \neq t$. Use that \mathbb{Q}^n is dense in \mathbb{R}^n to choose a point in each $\mathcal{U}(s)$ with rational coordinates. This defines an injective map $\mathcal{S} \to \mathbb{Q}^n$ and proves that \mathcal{S} is countable.
- 3)i) Prove that if \mathcal{M} and \mathcal{N} are metric spaces and $g: \mathcal{M} \to \mathcal{N}$ is a uniformly continuous function, then whenever $(x_n) \subseteq \mathcal{M}$ is Cauchy, the sequence $(g(x_n))$ is Cauchy. **Solution.** Let $\varepsilon > 0$ find $\delta > 0$ so that $d(x,y) < \delta \implies d(g(x),g(y)) < \varepsilon$, find $N \in \mathbb{N}$ such that $n, m > N \implies d(x_n, x_m) < \delta$ and note that hence, for any n, m > N we have $d(g(x_n), g(x_m)) < \varepsilon.$
 - ii) Let \mathcal{M} and \mathcal{N} be metric spaces, let $A \subseteq \mathcal{M}$ and let $\overline{A} \subseteq \mathcal{M}$ denote the closure of A. If \mathcal{N} is complete and $h: A \to \mathcal{N}$ is uniformly continuous, prove that there is a unique continuous function $h: \overline{A} \to \mathcal{N}$ such that h(a) = h(a) for every $a \in A$. \mathbf{S}

folution. For any
$$a \in A$$
, choose $(a_n) \subset A$ such that $a_n \to a$ and define

$$\widetilde{h}\left(a\right) = \lim_{n \to \infty} h\left(a_n\right)$$

This limit exists because (a_n) Cauchy implies $(h(a_n))$ Cauchy and N is complete. Also note that the limit is independent of the choice of sequence (a_n) converging to a; if (b_n) is another sequence in A converging to a then by considering the sequence $a_1, b_1, a_2, b_2, \ldots$ we see that the limits coincide. We need to see that h is continuous. Let $\varepsilon > 0$ find $\delta > 0$ using uniform continuity so that $a, b \in A$, $d(a, b) < \delta$ implies $d(h(a), h(b)) < \varepsilon$. If $x \in \overline{A}, a_n \to x$ so that

for some $N \in \mathbb{N}$, n > N implies $d(f(x), f(a_n)) < \varepsilon$ and we pick any point $b \in B_{\delta/2}(x) \cap A$ then there is a $a_m \in B_{\delta/2}(x)$ with m > N hence

$$|\widetilde{h}(x) - \widetilde{h}(b)| \le |\widetilde{h}(x) - \widetilde{h}(a_m)| + |\widetilde{h}(a_m) - \widetilde{h}(b)| < 2\varepsilon.$$

Similarly, if $c \in B_{\delta/2}(x) \cap \overline{A}$ then $|\tilde{h}(x) - \tilde{h}(c)| < 3\varepsilon$ and hence \tilde{h} is continuous on \overline{A} . Finally, since any continuous function on \overline{A} must satisfy the boxed equation above, the extension is unique.

4) Assume $f:(a,b) \to \mathbb{R}$ has derivative at every point in (a,b). Let $c \in (a,b)$ and assume that

 $\lim_{x \to c} f'(x)$

exists and is finite. Prove that the value of this limit must be f'(c). Solution. See Pset 8, question 5.

5) Assume f, g, and h are real-valued functions defined on [0, 1] and $g \ge 0$ is in $\mathcal{R}(x)$. i) Prove that if f is continuous, there exists $w \in [0, 1]$ such that

$$\int_{0}^{1} f\left(t\right) g\left(t\right) \ dt = f\left(w\right) \int_{0}^{1} g\left(t\right) \ dt$$

Hint: Use the intermediate value theorem. **Solution.** Notice that

$$\left(\min_{[0,1]} f\right) \int_0^1 g\left(t\right) \ dt \le \int_0^1 f\left(t\right) g\left(t\right) \ dt \le \left(\max_{[0,1]} f\right) \int_0^1 g\left(t\right) \ dt$$

so the problem follows from the intermediate value theorem (using continuity of f).

ii) Prove that if h is monotone increasing (not necessarily continuous), there exists $z \in [0, 1]$ such that

$$\int_{0}^{1} h(t) g(t) dt = h(0) \int_{0}^{z} g(t) dt + h(1) \int_{z}^{1} g(t) dt$$

Hint: Use the intermediate value theorem, but make sure to justify continuity. **Solution.** Let

$$\Phi(x) = h(0) \int_0^x g(t) dt + h(1) \int_x^1 g(t) dt,$$

g integrable implies Φ continuous. On the other hand, since h(0) < h(1), min $\Phi = \Phi(1)$ and max $\Phi = \Phi(0)$. Finally, since h is monotone increasing

$$\min_{[0,1]} \Phi = h(0) \int_0^1 g(t) \, dt \le \int_0^1 h(t) g(t) \, dt \le h(1) \int_0^1 g(t) \, dt = \max_{[0,1]} \Phi$$

so the problem follows from the intermediate value theorem applied to $\Phi.$

6) Let $S = \{n_1, n_2, \dots, \}$ denote the collection of those positive integers that do not involve the digit 3 in their decimal representation. (For example, $7 \in S$, but $131 \notin S$.) Show that $\sum \frac{1}{n_i}$ converges and has sum less than 90.

Hint: If m has ℓ digits, then $\frac{1}{m} \leq \frac{1}{10^{\ell-1}}$. How many elements of S have ℓ digits? **Solution.** If $s \in S$ has exactly ℓ digits then the first digit can be anything other than 0 or 3 (8 possibilities) and the other digits can be anything other that 3 (9 possibilities) thus there are $8 \cdot (9)^{\ell-1}$ such numbers. That means that

$$\sum_{n_k \in S} \frac{1}{n_k} < 8 \sum_{\ell \ge 1} \frac{9^{\ell-1}}{10^{\ell-1}} = 8 \sum_{\ell=0}^{\infty} \left(\frac{9}{10}\right)^{\ell} = \frac{8}{1 - \frac{9}{10}} = 80.$$

7) Assume that (g_n) is a sequence of real-valued functions defined on $T \subseteq \mathbb{R}$ satisfying $g_{n+1}(x) \leq C$ $g_n(x)$ for each $x \in T$ and $n \in \mathbb{N}$, and suppose that $g_n \to 0$ uniformly on T. Show that

$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} g_n\left(x\right)$$

converges uniformly on T. Solution. Define

$$G_{k}(x) = \sum_{n=1}^{k} (-1)^{n+1} g_{n}(x)$$

and note that if $2\ell < k$

since ε was arbitrary f(z) = f(1).

 $G_{k}(x) = G_{2\ell}(x) + (g_{2\ell+1}(x) - g_{2\ell+2}(x)) + (g_{2\ell+3}(x) - g_{2\ell+4}(x)) + \dots \pm g_{k}(x) \ge G_{2\ell}(x)$ and if $2\ell + 1 < k$ then

 $G_{k}(x) = G_{2\ell+1}(x) - (g_{2\ell+1}(x) - g_{2\ell+2}(x)) - (g_{2\ell+3}(x) - g_{2\ell+4}(x)) - \dots \pm g_{k}(x) \le G_{2\ell+1}(x).$ Let $\varepsilon > 0$, find $N \in \mathbb{N}$ such that n > N implies $||g_n|| < \varepsilon$ then if s, t > 2n + 1 we have $G_{2n+1}(x)$

$$G_{2n}(x) \le G_s(x) \le G_{2n+1}(x)$$
, and $G_{2n}(x) \le G_t(x) \le$

hence

$$|G_{s}(x) - G_{t}(x)| \le |G_{2n+1}(x) - G_{2n}(x)| = |g_{2n+1}(x)| < \varepsilon$$

which proves that G_s is uniformly Cauchy and hence uniformly convergent.

8) Consider a continuous function $f:[0,\infty)\to\mathbb{R}$. For each n define the continuous function $f_n: [0,\infty) \to \mathbb{R}$ by $f_n(x) = f(x^n)$. Show that the set of continuous functions $\{f_1, f_2, \ldots\}$ is equicontinuous on some interval containing x = 1 if and only if f is a constant function. **Solution.** Let I be an interval containing 1, let $\varepsilon > 0$ and let $\delta > 0$ be such that $x, y \in I$, $|x-y| < \delta$ implies $f_n(x) - f_n(y)| < \varepsilon$. Thus if $|x-1| < \delta$ then $|f(1) - f(x^n)| < \varepsilon$ for every $n \in \mathbb{N}$. Choose an x < 1 to see that $|f(1) - f(0)| \le \varepsilon$ and since $\varepsilon > 0$ was arbitrary f(1) = f(0). For any $z \in (0,\infty)$, choose large enough N so that $|z^{\frac{1}{N}} - 1| < \delta$ and hence $|f(1) - f(z)| < \varepsilon$, but 9) Define, for any $z \in \mathbb{R}$, the exponential function by

$$\exp\left(z\right) = \sum_{k=0}^{\infty} \frac{z^k}{k!}.$$

- i) Prove that exp : R → R is a continuous function.
 Solution. The partial sums are continuous functions that converge uniformly on any compact set (e.g., by the ratio test) and hence the limit function is continuous.
- ii) Use the binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

to prove $\exp(z + w) = \exp(z) \exp(w)$. Be sure to justify your steps. **Solution.** Note that the series converges absolutely.

$$\exp(z+w) = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} z^k y^{n-k}$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{z^k}{k!} \frac{y^{n-k}}{(n-k)!} = \left(\sum_{k=0}^{\infty} \frac{z^k}{k!}\right) \left(\sum_{\ell=0}^{\infty} \frac{y^\ell}{\ell!}\right) = \exp(z) \exp(w)$$

The first equality is by definition of exp, the second uses the binomal theorem, the third the definition of $\binom{n}{k}$, the fourth uses absolute convergence to rearrange the summands and the last uses definition of exp again.

iii) Prove that $\exp'(z) = \exp(z)$. Be sure to justify your steps.

Solution. Denote by $S_n(z)$ the partial sums of $\exp z$ and note that $(S_n(z))' = S_{n-1}(z)$ and hence $(S_n(z))'$ converges uniformly. It follows that $\exp z$ is differentiable with derivative

$$\exp'(z) = \lim_{n} (S_n(z))' = \lim_{n} S_{n-1}(z) = \exp(z).$$

4