
PRACTIVE FOR TEST 2 NUMBER 2 WITH SOLUTIONS
18.100B SPRING 2007

This test is closed book, no books, papers or notes are permitted. You may use
theorems, lemmas and propositions from the class and book. Note that where Rk

is mentioned below the standard metric is assumed.
There are 5 questions on the actual test, I think they are mostly easier than

these ones.

(1) Consider the function α : [0, 1] −→ R defined by

α(x) =

{
1
2x 0 ≤ x ≤ 1

2
1
2 (x+ 1) 1

2 ≤ x ≤ 1.

Show carefully, using results from class, that any monotonic increasing
function f : [0, 1] −→ R which is continuous at x = 1

2 is Riemann-Stieltjes
integrable with respect to α.

Solution: Write α = α1 + α2 where α1 = 1
2x and α2 = 0 in x ≤ 1

22,
α2 = 1

2 in 1
2 < x ≤ 1. Then a1 is continuous and as f is monotonic,

f ∈ R(α1) by a result in the book. Since α2 = 1
2I(x− 1

2 ) and f is continuous
at 1

2 combinging two results from the books shows that f ∈ R(α2). From
this it follows that f ∈ R(α).

(2) Let f be a continuous function on [a, b]. Explain whether each of the fol-
lowing statements is always true, with brief but precise reasoning.
(a) The function g(x) =

∫ b

x
f(y)dy is well defined.

Yes, f ∈ R for any subinterval.
(b) The function g is continuous.

Yes, the integral is a continous function of the lower limit.
(c) The function g is decreasing.

No, not unless f ≥ 0.
(d) The function g is uniformly continuous.

Yes, continous on a compact set implies uniformly continuous.
(e) The function g is differentiable.

Yes, g is differentiable since f is continuous.
(f) The derivative g′ = f on [a, b].

No, you fiend, it is g′ = −f since it is the lower limit!
(3) If f : R −→ R is differntiable and satisfies f(−10) = 10, f(0) = 0, f(10) =

10 show that there is a point where f ′(x) = 1/2.
Solution: Applying the mean value theorem twice, there are points z ∈

(−10, 0) where f ′(z) = −1 and y ∈ (0, 10) where f(y) = 1. From the
intermediate value theorem for derivatives there must exist a point x ∈
(z, y) at which f ′(x) = 1

2 .
(4) If f is a strictly positive continuous function on [−1, 1],meaning inf [−1,1] f >

0, show that g(x) =
√
f(x) is continuous.
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2

Solution: The function
√

:(0,∞) −→ (0,∞) is continuous since if x, y >
t > 0, t < 1, then

|
√
x−√y| = |x− y|√

x+
√
y
< ε

if |x− y| ≤ εt (since
√
t > t). The composite of two continuous functions is

continuous so
√
f : [−1, 1] −→ (0,∞) is continuous.

(5) (This is basically Rudin Problem 4.14)
Let f : [0, 1] −→ [0, 1] be continuous.

(a) State why the the map g(x) = f(x)−x, from [0, 1] to R is continuous.
(b) Using this, or otherwise, show that L = {x ∈ [0, 1]; f(x) ≤ x} is closed

and {x ∈ [0, 1]; f(x) < x} is open.
(c) Show that L is not empty.
(d) Suppose that f(x) 6= x for all x ∈ [0, 1] and conclude that L is open

in [0, 1] and that L 6= [0, 1].
(e) Conclude from this, or otherwise, that there must in fact be a point

x ∈ [0, 1] such that f(x) = x.
Solution:

(a) g(x) = −x is continous and the sum of two continuous functions is
continuous.

(b) L = {x ∈ [0, 1]; f(x) ≤ x} = g−1((−∞, 0]) is the inverse image of
a closed set under a continous map, so is closed. Similarly, {x ∈
[0, 1]; f(x) < x} = g−1((−∞, 0)) is the inverse image of an open set
under a continous map, so is open.

(c) Since g(1) = f(1)− 1 ≤ 0, 1 ∈ L so L 6= ∅.
(d) If f(x) 6= x for all x ∈ [0, 1] then L = g−1((−∞, 0]) since g−1({0}) = ∅.

Thus, L is open in [0, 1]. However, L 6= [0, 1] since g(0) ≥ 0 so 0 6∈ L.
(e) The preceeding statements are not consistent, that L ⊂ [0, 1] is both

open and closed, non-empty and not equal to [0, 1] since [0, 1] is con-
nected. Thus the assumption f(x) 6= x for all x ∈ [0, 1] is incorrect
and there must exist some x ∈ [0, 1] such that f(x) = x.

(6) Consider the function

f(x) =
−x(x+ 1)(x− 100)

x44 + x34 + 1
for x ∈ [0, 100].
(a) Polynomials are differentiable and x44 + x34 + 1 6= 0 on the real line,

so f is differentiable as the quotient of a differentiable function by a
non-vanishing differentiable function.

(b) f ′(0) = 100.
(c) The definition of differentiability means that there exists ε > 0 such

that the difference quotient (f(x) − f(0))/x > 0 for 0 < x < ε since
its limit at x = 0 is 100. Thus f(x) > 0 for 0 < x < ε.

(d) By inspection, f(0) = f(100) = 0. The mean value theorem asserts
the existence of x ∈ (0, 100) such that f(100) − f(0) = 100f ′(x), so
f ′(x) = 0.


