PRACTICE NUMBER 1 FOR TEST 2 18.100B SPRING 2007

This test is closed book, no books, papers or notes are permitted. You may use theorems, lemmas and propositions from the class and book. Note that where \mathbb{R}^k is mentioned below the standard metric is assumed.

Problem 1 Put $B = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ and suppose $g: B \longrightarrow \mathbb{R}$ is a continuous function. Show that the function

$$f(x,y) = x^{2} + y^{2} + (x^{2} + y^{2})(1 - (x^{2} + y^{2}))g(x,y)$$

is continuous on B and prove that there is some point $(\bar{x}, \bar{y}) \in B$ such that $f(\bar{x}, \bar{y}) = \frac{1}{2}.$

- Problem 2 If $f:[0,1] \longrightarrow [0,\infty)$ is increasing and $f(\frac{1}{2}) > 1$, show that $\int_0^1 f(x) dx > \frac{1}{2}$. Problem 3 Show that if f is a continuous function on [a,b] then there exists a function $g:[a,b]\longrightarrow \mathbb{R}$ such that g'=f.
- Problem 4 If $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ are two functions which are continuous at 0, show that the function

$$h(x) = \max\{f(x), g(x)\}, \ x \in \mathbb{R}$$

is also continuous at 0.

Problem 5 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable functions which satisfies

f(x) = 0, for |x| > 10, f(-1) = 1, f(1) = -1.

Show that there are at least two values of $x \in \mathbb{R}$ such that f'(x) = 0.