
18.100B Practice for the first midterm
Solutions.

Problems.

1) Let (M, d) be an arbitrary metric space.
a) State the definition of a connected subset of M.

Solution. See Definition 2.45 in Rudin.

b) Prove that E ⊆ M is connected if and only if every non-empty proper subset has a non-empty
boundary in E.
Solution. Notice that the equivalent statement

E is separated if and only if there is a proper non-empty subset with empty
boundary in E,

follows from the fact that A ∪ B is a separation of E if and only if A and B = E ∩ Ac have
no boundary in E.

2) Let (M, d) be an arbitrary metric space (e.g., not necessarily Euclidean space).
a) Show that a compact subset of M is necessarily closed and bounded.

Solution. See Theorem 2.34 in Rudin for a proof that compact sets are closed. To prove that
a compact set K ⊆M is bounded, pick any point p ∈ M and consider the open sets Bn (p).
These cover K (indeed, they cover M), hence there is a finite subcover of K and hence K is
contained in BN (p) for large enough N , i.e., K is bounded.

b) Give an example of a metric space with a closed and bounded subset that is NOT compact.

Hint: Use the discrete metric d (x, y) =

{
0 if x = y

1 if x 6= y

Solution. Notice that any subset of a metric space with the discrete metric is closed and
bounded. However, only finite subsets are compact (by a homework question), hence any
infinite subset is closed, bounded, and not compact.

3) Show that
√

2 +
√

3 is irrational.
Hint: Show that

√
2 +

√
3 ∈ Q =⇒

√
2 ∈ Q.

Solution. Let
√

2+
√

3 = r then
√

3 = r−
√

2 and squaring both sides we get 3 = r2− 2
√

2+2.
If r is rational, then solving this equation for

√
2 would give a rational expression for

√
2 which

we know does not exist.

4) Let (M, d) be an arbitrary metric space (e.g., M is not necessarily complete). If (xn) and (yn)
are both Cauchy sequences and dn = d (xn, yn), show that (dn) is a convergent sequence of real
numbers.
Solution. Because R is complete, we only need to show that dn is Cauchy. Repeated use of the



2

triangle inequality shows that

d (xn, yn) ≤ d (xn, xm)+d (xm, ym)+d (ym, yn) =⇒ d (xn, yn)−d (xm, ym) ≤ d (xn, xm)+d (yn, ym)

and since the same is true reversing the roles of m and n, we find

|dn − dm| = |d (xn, yn)− d (xm, ym)| ≤ d (xn, xm) + d (yn, ym) .

Thus (xn) Cauchy and (yn) Cauchy together imply (dn) Cauchy and hence convergent.

5) Let (M, d) be an arbitrary metric space. If G ⊆ M is open, and A is any subset of M, show
that

G ∩A = ∅ ⇐⇒ G ∩A = ∅

Solution. Clearly G ∩ A = ∅ implies G ∩ A = ∅, so suppose G ∩ A = ∅, we need to show that
no point of G is a limit point of A. But if x ∈ G then, because G is open, there is an open ball
around x that stays in G and hence does not intersect A, which implies that x is not a limit
point of A.

6) Show that if x, y ∈ R and x < y then there exists an irrational number between x and y. (You
may use the existence of a rational number between x and y.)
Solution. Let r be a rational number satisfying x < r < y, we can find a large enough N so
that

x < r +
√

2
N

< y
(
⇐⇒ N (y − r) >

√
2
)

and notice that if r +
√

2
N = q were rational then

√
2 = N (q − r) would be rational.

An alternate proof is to note that there are uncountably many reals between x and y and there
are only countably many rationals, so there must be irrationals between x and y.


