Preliminary lecture schedule for 18.100B/C, Spring 2007 by week.
- T 2/6 -- F 2/9. Sets and fields, the real numbers
Read Rudin pgs. 1-17
- M 2/12 -- F 2/16. Countability, metric spaces
Read Rudin pgs. 24-35.
- (2/12) 100B.S2 L3
- (2/13) 100C/100B.S1-L3 L3
- (2/14) 100B.S2 L4
- (2/14) 100C R2
- (2/15) 100C/100B.S1-L4 L4
- (2/16) 100B.S2 L5
- T 2/20 (=M) -- F 2/23. Closed sets, compact spaces
Read Rudin pgs. 34-38.
- (2/20) 100B.S2 L6
- (2/21) 100B.S2 L7
- (2/21) 100C R3
- (2/22) 100C/100B.S1-L5 L5
- (2/23) 100B.S2 L8
- M 2/26 -- F 3/2. Compact subsets of Euclidean space
Read Rudin pgs. 38-40.
- (2/26) 100B.S2 L9
- (2/27) 100C/100B.S1-L6 L6
- (2/28) 100B.S2 L10
- (2/28) 100C R4
- (3/1) 100C/100B.S1-L7 L7
- (3/2) 100B.S2 L11
- M 3/5 -- F 3/9. Completeness, sequences and series.
Read Rudin pgs. 42-43, 47-69, 71-75.
- (3/5) 100B.S2 L12
- (3/6) 100C/100B.S1-L8 L8
- (3/7) 100B.S2 L13
- (3/7) 100C R5
- (3/8) 100C/100B.S1-L9 L9
- (3/9) 100B.S2 L14
- M 3/12 -- F 3/16. Completeness, sequences and series.
Read Rudin pgs. 42-43, 47-69, 71-75.
- (3/12) 100B.S2 L15
- (3/13) 100C/100B.S1-L10 L10
- (3/14) 100B.S2 L16
- (3/14) 100C R6
- (3/15) 100C/100B.S1-L11 L11
- (3/15) 100B and C, Test 1: 7:30-8:30 PM, Rooms 4-149, 4-153, 4-163.
- (3/16) 100B.S2 L17
- M 3/19 -- F 3/23. Continuity and compactness.
Read Rudin pgs. 85-93.
- (3/19) 100B.S2 L18
- (2/20) 100C/100B.S1-L12 L12
- (3/21) 100B.S2 L19
- (3/21) 100C R7
- (3/22) 100C/100B.S1-L13 L13
- (3/23) 100B.S2 L20
- M 4/2 -- F 4/6. Differentiability, Mean value
theorem.
Read Rudin pgs. 103-110.
- (4/2) 100B.S2 L21
- (4/3) 100C/100B.S1-L14 L14
- (4/4) 100B.S2 L22
- (4/4) 100C R8
- (4/5) 100C/100B.S1-L15 L15
- (4/6) 100B.S2 L23
- M 4/9 -- F 4/13. Taylor series, Riemann-Stieltjes integral.
Read Rudin pgs. 120-127.
- (4/9) 100B.S2 L24
- (4/10) 100C/100B.S1-L16 L16
- (4/11) 100B.S2 L25
- (4/11) 100C R9
- (4/12) 100C/100B.S1-L17 L17
- (4/13) 100B.S2 L26
- W 4/18 -- F 4/20. Integrability, fundamental theorem of calculus.
Read Rudin pgs. 128-136.
- (4/18) 100B.S2 L27
- (4/18) 100C R10
- (4/19) 100C/100B.S1-L18 L18
- (4/20) 100B.S2 L28
- M 4/23 -- F 4/27. Sequences of functions.
Read Rudin pgs. 143-151.
- (4/23) 100B.S2 L29
- (4/24) 100C/100B.S1-L19 L19
- (4/25) 100B.S2 L30
- (4/25) 100C R11
- (4/26) 100C/100B.S1-L20 L20
- (4/27) 100B.S2 L31
- M 4/30 -- F 5/4. Uniform convergenece.
Read Rudin pgs. 150-154.
- (4/30) 100B.S2 L32
- (5/1) 100C/100B.S1-L21 L21
- (5/2) 100B.S2 L33
- (5/2) 100C R12
- (5/3) 100C/100B.S1-L22 L22
- (5/4) 100B.S2 L34
- M 5/7 -- F 5/11. Uniform convergence, equicontinuity.
Read Rudin pgs. 150-161.
- (5/7) 100B.S2 L35
- (5/8) 100C/100B.S1-L23 L23
- (5/9) 100B.S2 L36
- (5/9) 100C R13
- (5/10) 100C/100B.S1-L24 L24
- (5/11) 100B.S2 L37
- M 5/14 -- T 5/17. Power series, fundamental theorem of
algebra.
Read Rudin pgs.83-86, 180-185.
- (5/14) 100B.S2 L238
- (5/15) 100C/100B.S1-L25 L25
- (5/16) 100B.S2 L39
- (5/16) 100C R14
- (5/17) 100B.S1/100C L26