
HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
SOLUTIONS TO ASSIGNMENT 8: DUE APRIL 12, AT 11:00 IN

2-108.

(1) (10 points) Let K1, K2 ⊂ M be two a compact subsets of a metric space
(M,d). Show that there exist points p ∈ K1 and q ∈ K2 such that

d(p, q) = sup
y∈K2

inf
x∈K1

d(x, y).

Define

D(K1,K2) = max
(

sup
y∈K2

inf
x∈K1

d(x, y), sup
x∈K1

inf
y∈K2

d(x, y)
)

.

Show that D defines a metric on the collection of (non-empty) compact
subsets of M.

(RBM) Since I messed this up initially, here is a hint:- The triangle
inequality is the tricky part of course. For three compact sets K1, K2 and
K3 write down the usual triangle inequality for x ∈ K1, y ∈ K2 and z ∈ K3.
Take the infimum over y and then bound one term by D(K3,K2) and then
take the infimum over z and the supremum over x.

Solution:- First fix y in K2 and consider γ(y) = infx∈K1 d(x, y). By
definition there is a sequence xn in K1 such that d(xn, y) −→ γ(y). By
the compactness of K1 we may pass to a subsequence which converges
to x′(y) and then by the continuity of d, d(x′(y), y) = γ(y). Now take
the supremum in y so again there exists a sequence yn ∈ K2 such that
γ(yn) → supy∈K2

infx∈K1 d(x, y). Using the compactness of K2 there is a
subsequence which converges yn → y. The corresponding sequence in K1,
x′(yn) then has a subsequence which converges to some x, so passing to the
subsequence of yn to which this corresponds we can arrange that x′(yn) → x
and yn → y. Now, again by the continuity of the distance function,

d(x, y) = lim d(x′(yn), yn) = sup
y∈K2

inf
x∈K1

d(x, y)

To see that D(K1,K2) defines a metric on compact subsets of M observe
first that if supy∈K2

infx∈K1 d(x, y) = 0 then infx∈K1 d(x, y) = 0 for each
y ∈ K2 and this implies that d(x′(y), y) in the notation above, so x′(y) = y
and K2 ⊂ K1. It follows that D(K1,K2) = 0 implies that K1 ⊂ K2 and
K2 ⊂ K1 so K1 = K2. The converse is obvious so the first condition on a
metric is satisfied. Symmetry of D is immediate from the definition. For
the triangle inequality, following the hint above, start from

d(x, y) ≤ d(x, z) + d(z, y) ∀ x ∈ K1, y ∈ K2 and z ∈ K3.

Taking the infimum over y,

inf
y∈K2

d(x, y) ≤ d(x, z) + inf
y∈K2

d(z, y)

≤ d(x, z) + D(K3,K2), ∀ x ∈ K1, z ∈ K2,
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since supz∈K3
infy∈K2 d(z, y) ≤ D(K3,K2). Now take the infimum over z

inf
y∈K2

d(x, y) ≤ inf
z∈K3

d(x, z) + D(K3,K2), ∀ x ∈ K1.

Then take the supremum over x ∈ K1, to see that

sup
x∈K1

inf
y∈K2

d(x, y) ≤ sup
x∈K1

inf
z∈K3

d(x, z) + D(K3,K2) ≤ D(K1,K3) + D(K3,K2).

Either by repeating the argument with the roles of x and y reversed, or by
noting that the right side is symmetric in K1 and K2 the inequality

sup
y∈K2

inf
x∈K1

d(x, y) ≤ sup
x∈K1

inf
z∈K3

d(x, z) + D(K3,K2) ≤ D(K1,K3) + D(K3,K2).

also holds and hence

D(K1,K2) ≤ D(K1,K3) + D(K3,K2).

This D is a metric as claimed.
(2) (10 points) If f : [a, b] −→ R is differentiable (where a < b) and f ′(x) 6= 0

for all x ∈ (a, b) show that f(b) 6= f(a).
Solution:- By the mean value theorem there exists x ∈ (a, b) such that

f(b)− f(a) = f ′(x)(b− a).

So if f(b) = f(a) the right side must vanish and since b > a there must
exists a point where f ′(x) = 0 violating the assumptions, so f(b) 6= f(a).

(3) (10 points) If Ci for 0 ≤ i ≤ n are real constants such that

C0 +
C1

2
+

C2

3
+ · · ·+ Cn−1

n
+

Cn

n + 1
= 0

show that the equation

C0 + C1x + C2x
2 + · · ·+ Cnxn = 0

has at least one real solution x in the interval (0, 1).
Solution:- Consider the polynomial

p(t) =
n∑

i=0

Ci

i + 1
ti+1.

Since it has no constant term, p(0) = 0. On the other hand the assumption
above is that p(1) = 0. So, by the mean value theorem there exists some
point x ∈ (0, 1) such that p′(x) = 0. However

p′(x) =
n∑

i=0

Cix
i

so this gives a solution of the equation as desired.
(4) (10 points) Suppose f : R −→ R is differentiable and that f ′(x) 6= 1, show

that there can be at most one x ∈ R such that f(x) = x (‘a fixed point of
f ’).

Solution:- Suppose to the contrary that there are two distinct points
x1 < x2 with the property f(xi) = xi, that is g(x1) = g(x2) = 0 where
g(x) = f(x)− x. Since g is differentiable, by the mean value theorem there
is a point x ∈ (x1, x2) at which g′(x)(x2−x1) = 0, so g′(x) = f ′(x)−1 = 0.
Hence there can be at most one point at which f(x) = x.



HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007SOLUTIONS TO ASSIGNMENT 8: DUE APRIL 12, AT 11:00 IN 2-108.3

(5) (10 points) A function f : [a, b] −→ R is said to be ‘Lipschitz continuous’
(or just ‘Lipschitz’) if there exists a constant A such that

|f(x)− f(y)| ≤ A|x− y| ∀ x, y ∈ [a, b].

Show that if f : [a, b] −→ R is differentiable and f ′ : [a, b] −→ R is bounded
then f is Lipschitz.

Solution:- The Lipschitz constant can be taken to be A = supz∈[a,b] |f ′(z)|
since for any x 6= y there exists z such that

f(x)− f(y) = f ′(x)(x− y) =⇒ |f(x)− f(y)| ≤ A|x− y|.
Hence f is Lipschitz, the case x = y being trivially true.

(6) (10 points) Suppose that g : [0, 1] −→ R is a Lipschitz function and that
f : [0, 1] −→ [0, 1] is a differentiable functions satisfying

f ′(x) = g(f(x)) ∀ x ∈ [0, 1].

Show that f ′ : [0, 1] −→ R is Lipschitz.
Solution:- Since f is differentiable, it is continuous. Since g is Lipschitz,

it is continuous on an interval containing the range of f, so g ◦ f is also
continuous. Hence from the differential equation, f ′ is continous on [0, 1].
As a continous function on a compact interval it is bounded, hence by
the previous problem f is Lipschitz. Since g is assumed to be Lipschitz,
|g(z)− g(z′)| ≤ B|z − z′| for some constant B and hence

|f ′(x)− f ′(y)| = |g(f(x))− g(f(y))| ≤ B|f(x)− f(y)| ≤ AB|x− y|
where A is the Lipschitz constant for f.

* Extra Problem – for your amusement only:- Rudin problem 15 of Chapter
5.


