HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
SOLUTIONS TO ASSIGNMENT 8: DUE APRIL 12, AT 11:00 IN
2-108.

(1) (10 points) Let K;, K3 C M be two a compact subsets of a metric space
(M, d). Show that there exist points p € K; and ¢ € K such that
d(p,q) = sup inf d(x,y).
(p,q) JSup inf (z,y)

Define

D(K;, K3) = max ( sup inf d(z,y), sup inf d(x,y)) .
yEK> reK1 e K, YEK2
Show that D defines a metric on the collection of (non-empty) compact
subsets of M.

(RBM) Since I messed this up initially, here is a hint:- The triangle
inequality is the tricky part of course. For three compact sets K7, Ko and
K3 write down the usual triangle inequality for x € K7,y € Ky and z € K3.
Take the infimum over y and then bound one term by D(K3, K5) and then
take the infimum over z and the supremum over x.

Solution:- First fix y in Ko and consider v(y) = inf ek, d(z,y). By
definition there is a sequence x, in K; such that d(z,,y) — 7(y). By
the compactness of K; we may pass to a subsequence which converges
to #'(y) and then by the continuity of d, d(z'(y),y) = 7(y). Now take
the supremum in y so again there exists a sequence ¥y, € K5 such that
Y(Yn) — SUPyck, infrex, d(z,y). Using the compactness of Ky there is a
subsequence which converges y,, — y. The corresponding sequence in K7,
2'(yn) then has a subsequence which converges to some x, so passing to the
subsequence of y,, to which this corresponds we can arrange that z’(y,) — =
and y, — y. Now, again by the continuity of the distance function,

yeEK2 zeky

To see that D(K7, K2) defines a metric on compact subsets of M observe
first that if sup,¢ g, infrek, d(z,y) = 0 then inf ek, d(x,y) = 0 for each
y € K5 and this implies that d(z'(y), y) in the notation above, so 2’(y) =y
and Ky C K. It follows that D(K;, Ks) = 0 implies that K; C K> and
Ky C K; so K1 = K». The converse is obvious so the first condition on a
metric is satisfied. Symmetry of D is immediate from the definition. For
the triangle inequality, following the hint above, start from

d(z,y) <d(z,2)+d(z,y) Vo e Ky, y € Ky and z € Ks.
Taking the infimum over y,

inf d <d inf d
Jof dz,y) <d(z,z)+ nf d(zy)

<d(z,z)+ D(K3,Ks), Vv € K, z € Ko,
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since sup, ¢ i, infyex, d(z,y) < D(K3, K3). Now take the infimum over z

inf d(z,y) < inf d(z,2) + D(Ks, Ks), ¥V € K.
f d(x,y) < inf d(x,2)+ (K3, K3), Vo€ Ky

Then take the supremum over z € K, to see that

sup inf d(z,y) < sup 1nf d(aj z) + D(K3,Ky) < D(K1, K3) + D(K3, K»).
re K, yeKs zeK;, #
Either by repeating the argument with the roles of x and y reversed, or by
noting that the right side is symmetric in K; and K5 the inequality
sup inf d(z,y) < sup 1nf d(a; z) + D(K3,K3) < D(K1, K3) + D(K3, K3).
yEK, TEKL TEK, #
also holds and hence
D(K,, Ks) < D(K1, K3) + D(K3, K»).
This D is a metric as claimed.
(2) (10 points) If f : [a,b] — R is differentiable (where a < b) and f'(z) # 0
for all « € (a,b) show that f(b) # f(a).
Solution:- By the mean value theorem there exists x € (a, b) such that

f) = fla) = f'(2)(b - a).
So if f(b) = f(a) the right side must vanish and since b > a there must
exists a point where f'(z) = 0 violating the assumptions, so f(b) # f(a).
(3) (10 points) If C; for 0 < ¢ < n are real constants such that

Cl CQ Cn—l Cn _
s T

show that the equation

Co+ Ciz+ Coz?+ -+ Cha™ =

has at least one real solution z in the interval (0, 1).
Solution:- Consider the polynomial

n

Ci
t)y=Y ——t'*
P=2 55
=0
Since it has no constant term, p(0) = 0. On the other hand the assumption
above is that p(1) = 0. So, by the mean value theorem there exists some
point = € (0,1) such that p’(z) = 0. However

n
= E Cil‘z
i=0

so this gives a solution of the equation as desired.

(4) (10 points) Suppose f : R — R is differentiable and that f’(x) # 1, show
that there can be at most one x € R such that f(x) = = (‘a fixed point of
7).

Solution:- Suppose to the contrary that there are two distinct points
x1 < xo with the property f(z;) = x;, that is g(z1) = g(z2) = 0 where
g(z) = f(x) — x. Since g is differentiable, by the mean value theorem there
is a point « € (z1, z2) at which ¢'(z)(x2 —21) =0, 80 ¢'(x) = f'(z)—1=0.
Hence there can be at most one point at which f(z) = «.
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(5) (10 points) A function f : [a,b] — R is said to be ‘Lipschitz continuous’
(or just ‘Lipschitz’) if there exists a constant A such that

[f(@) = f)l < Alz —y| V =,y € [a,b].
Show that if f : [a,b] — R is differentiable and f’ : [a, b] — R is bounded
then f is Lipschitz.
Solution:- The Lipschitz constant can be taken to be A = sup, ¢, 4 [f'(2)]
since for any x # y there exists z such that

f@) = fy) = f'(@)(@ —y) = |f(2) - fy)] < Alz —y].
Hence f is Lipschitz, the case x = y being trivially true.
(6) (10 points) Suppose that g : [0,1] — R is a Lipschitz function and that
f:0,1] — [0, 1] is a differentiable functions satisfying

f'(@) =g(f(x)) ¥z €[0,1].
Show that f’:[0,1] — R is Lipschitz.

Solution:- Since f is differentiable, it is continuous. Since g is Lipschitz,
it is continuous on an interval containing the range of f, so g o f is also
continuous. Hence from the differential equation, f is continous on [0, 1].
As a continous function on a compact interval it is bounded, hence by
the previous problem f is Lipschitz. Since g is assumed to be Lipschitz,
lg(z) — g(2")| < Blz — 2’| for some constant B and hence

(@) = f' W)l = lg(f (@) — g(f )| < Blf(x) — f(y)| < ABlz — |

where A is the Lipschitz constant for f.
* Extra Problem — for your amusement only:- Rudin problem 15 of Chapter
5.



