HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 7: Solutions.

1. Let n be an arbitrary positive integer. Using the definitions, prove
that the function f:[—1,1] — R, f(x) = 2™ is uniformly continuous.

Solution. For every z,y € [—1,1], we have |f(z) — f(y)| = |z" — y"| =
lz —y|- |zt + 2" 2y + -+ y" Y. Since |27 + 2" 2y oo Fy Tl <
lz|" L+ |2 "2 y| + -+ Jy|" Tt <, for all @,y € [—1,1], we find that

[f(x) = f(Y)| < nlz—yl, for all 2,y € [-1,1].

Let € > 0 be given. Set § = ¢/n. For every z,y in [—1, 1], such that |[z—y| < 6,
it follows that |f(z) — f(y)| <e.

In conclusion, f(x) is uniformly continuous.

2. Let f :[0,1] — [0,1] be a continuous function. Prove that f has a
fixed point, i.e., there exists x € [0, 1], such that f(z) = z.

Solution. Consider the function g(z) : [0,1] — R, g(z) = f(z) — =.
Since £(0,1]) € [0,1], g(0) = £(0) > 0. and g(1) = f(1) — 1 < 0. So
g(1) < 0 < g(0). The function g(x) is continuous (because f(x) is), so
by the intermediate value property, there exists z, 0 < x < 1, such that
g(z) = 0 (equivalently f(z) = x).
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3. Let f,g: X — Y be continuous functions, and let E/ be a dense subset
of X.

(1) Prove that f(E) is dense in f(X).
(2) If f(p) = g(p) for all p € E, prove that f(x) = g(z) for all x € X.

(In other words, this exercise shows that a continuous function is determined
by its values on a dense subset of its domain.)

Solution. (a) We prove that every open subset of f(X) intersects f(E).
Let V be an open subset of f(X). There exists V'’ open in Y, such that
VN f(X) = V. Since f : X — Y is continuous, f~!(V’') is open in
X. Then f~Y(V') N E # 0, because E is dense in X. This implies that
FUTHVNFE) # 0. But f(f7H(V')) C V', and so VN f(E) = V'Nf(E) #
0

(b) Let z € X be arbitrary. From the density of E, we know that there
exists a sequence {p,} C E, such that lim,_, p, = x. For every n, f(p,) =
9(pn), and by the continuity of f and g, it follows that f(z) = g(z).

4. Recall that every rational number x € Q, z # 0, can be written
uniquely in a reduced form z = =, where m,n € Z, n > 0. For z = 0, take

n = 1. Consider the function f: R — R, defined by

if

n’
(1) Prove that f is continuous at every irrational point.

(2) Prove that f is discontinuous at every rational point.
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Solution. Let xy be an irrational number. Let ¢ > 0, we want to find
d > 0, such that |f(z) — 0] < €, whenever |x — x9| < J. Note that if x

is irrational, then |f(x)| = 0, so the question is how to choose § so that
the inequality holds for rational z = 2 as well (in that case, |f(z)| = 1).

Intuitively, if 7 is close to xq irrational, then n must be large, but we need
to formalize this.

Let N be a natural number, such that N > 1. If v = 2 |z — | =

Im=nzol "For every i = 1,...,N, define k; to be the minimum of the set

{|77’:L —ixg| : m € N}. Note that although this set is infinite, the minimum
exists (it comes from the fact that N is discrete). Moreover, since zg is
irrational, k; > 0.

Now let & > 0 be the minimum of all k; (here the minimum exists because
there are finitely many i’s). Set § = £.

The claim is that for all m,n € N, such that w < 4, necessarily
n > N. Assume that n < N. By the construction above |m — nzo| > k, so
|m_n"x°| > |m_]\7,m°| > % = 4, contradiction. So n > N.

Since n > N, n > %, so f(™=) < ¢, for all m,n such that [T — x| < 4.
This finishes the proof that f is continuous at irrational z.

Now let x{, be a rational number. By the same argument as before, one
can show that lim,_, ./ f(x) = 0. (The argument is identical, because we only
consider, as we should, rationals 2 # xf, which makes all k; > 0 again.)

But since f(z() # 0, it follows that f is discontinuous at x(,, and the
discontinuity is of the first kind (the one sided limits exist).

5. Let X be a compact subset of R and f : X — R be a function. Define
the graph of f to be the set

G(f) ={(z, f(x)) : v € X}

Prove that f is continuous on X if and only if G(f) is compact.

Solution. Assume first the G(f) is compact. Assume, by contradiction,
that f is discontinuous at xy € X. This means that there exists € > 0, and a
sequence {z,} C X, such that {x,} converges to z( (for example, d(x,,, xg) <
1) but d(f(xn), f(z0)) > e, for all n. Consider the sequence {(z, f(zn))} C
G(f). Since G(f) is compact, this must have subsequence {(z,, f(zn,))}
which converges to a point (z1, f(x1)) € G(f). In particular, {z,, } converges
to 1. By uniqueness of the limit, 21 = . But then {f(z,,)} converges to
f(zo), which is a contradiction with the construction of {x,}.

Note that apparently we didn’t use that X is compact in this proof. But
this is in fact a necessary consequence of the fact that G(f) is compact. This
is because the first projection function prq : G(f) — X, (z, f(z)) — =z, is
continuous and surjective.

Conversely, let’s assume first that f is continuous. Then f(X) is compact.
Consider theset £ = X X f(X) = {(x,y) : z € X,y € f(X)}. Clearly G(f) C
E. Moreover, G(f) is closed in E : let (z¢,y0) € E be a limit point of G(f).
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There exists a sequence {(xy, f(zn)} C G(f) which converges to (zo, o).
This means that {x,} converges to =g, and {f(x,)} converges to yo. Since
f is continuous, it must be that yo = f(z¢), equivalently (xo,yo) € G(f).

We would like to claim that E is compact, and therefore G(f) is compact,
being closed in E. If E is a subset of the Euclidean R2, then it is easy to
verify the Heine-Borel theorem for E. The boundedness is immediate: if X
and f(X) are bounded, then each is a subset of a 1-cell, therefore E is a
subset of some 2-cell. If (z,y) is a limit point of F in R?, then z is a limit
point for X, therefore x € X, and similarly y is a limit point of f(X), so
y € f(X).

Extra problem: Continuous extensions: ex 13 pp 99-100.

Solution. The solution will be posted on Thursday because of the CI-M
assignment this week.



