HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007 ASSIGNMENT 7: Solutions.

1. Let *n* be an arbitrary positive integer. Using the definitions, prove that the function $f: [-1,1] \to \mathbb{R}$, $f(x) = x^n$ is uniformly continuous.

Solution. For every $x, y \in [-1, 1]$, we have $|f(x) - f(y)| = |x^n - y^n| = |x - y| \cdot |x^{n-1} + x^{n-2}y + \dots + y^{n-1}|$. Since $|x^{n-1} + x^{n-2}y + \dots + y^{n-1}| \le |x|^{n-1} + |x|^{n-2}|y| + \dots + |y|^{n-1} \le n$, for all $x, y \in [-1, 1]$, we find that

$$|f(x) - f(y)| \le n|x - y|$$
, for all $x, y \in [-1, 1]$.

Let $\epsilon > 0$ be given. Set $\delta = \epsilon/n$. For every x, y in [-1, 1], such that $|x-y| < \delta$, it follows that $|f(x) - f(y)| < \epsilon$.

In conclusion, f(x) is uniformly continuous.

2. Let $f : [0,1] \to [0,1]$ be a continuous function. Prove that f has a fixed point, i.e., there exists $x \in [0,1]$, such that f(x) = x.

Solution. Consider the function $g(x) : [0,1] \to \mathbb{R}$, g(x) = f(x) - x. Since $f([0,1]) \subset [0,1]$, $g(0) = f(0) \ge 0$, and $g(1) = f(1) - 1 \le 0$. So $g(1) \le 0 \le g(0)$. The function g(x) is continuous (because f(x) is), so by the intermediate value property, there exists $x, 0 \le x \le 1$, such that g(x) = 0 (equivalently f(x) = x).

3. Let $f, g: X \to Y$ be continuous functions, and let E be a dense subset of X.

(1) Prove that f(E) is dense in f(X).

(2) If f(p) = g(p) for all $p \in E$, prove that f(x) = g(x) for all $x \in X$.

(In other words, this exercise shows that a continuous function is determined by its values on a dense subset of its domain.)

Solution. (a) We prove that every open subset of f(X) intersects f(E). Let V be an open subset of f(X). There exists V' open in Y, such that $V' \cap f(X) = V$. Since $f : X \to Y$ is continuous, $f^{-1}(V')$ is open in X. Then $f^{-1}(V') \cap E \neq \emptyset$, because E is dense in X. This implies that $f(f^{-1}(V')) \cap f(E) \neq \emptyset$. But $f(f^{-1}(V')) \subset V'$, and so $V \cap f(E) = V' \cap f(E) \neq \emptyset$.

(b) Let $x \in X$ be arbitrary. From the density of E, we know that there exists a sequence $\{p_n\} \subset E$, such that $\lim_{n\to\infty} p_n = x$. For every n, $f(p_n) = g(p_n)$, and by the continuity of f and g, it follows that f(x) = g(x).

4. Recall that every rational number $x \in \mathbb{Q}$, $x \neq 0$, can be written uniquely in a reduced form $x = \frac{m}{n}$, where $m, n \in \mathbb{Z}$, n > 0. For x = 0, take n = 1. Consider the function $f : \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q}, \\ \frac{1}{n}, & \text{if } x = \frac{m}{n} \in \mathbb{Q}. \end{cases}$$

(1) Prove that f is continuous at every irrational point.

(2) Prove that f is discontinuous at every rational point.

Solution. Let x_0 be an irrational number. Let $\epsilon > 0$, we want to find $\delta > 0$, such that $|f(x) - 0| < \epsilon$, whenever $|x - x_0| < \delta$. Note that if x is irrational, then |f(x)| = 0, so the question is how to choose δ so that the inequality holds for rational $x = \frac{m}{n}$ as well (in that case, $|f(x)| = \frac{1}{n}$). Intuitively, if $\frac{m}{n}$ is close to x_0 irrational, then n must be large, but we need to formalize this.

Let N be a natural number, such that $N > \frac{1}{\epsilon}$. If $x = \frac{m}{n}$, $|x - x_0| = \frac{1}{\epsilon}$ $\frac{|m-nx_0|}{n}$. For every $i = 1, \ldots, N$, define k_i to be the minimum of the set $\{|m - ix_0| : m \in \mathbb{N}\}$. Note that although this set is infinite, the minimum exists (it comes from the fact that \mathbb{N} is discrete). Moreover, since x_0 is irrational, $k_i > 0$.

Now let k > 0 be the minimum of all k_i (here the minimum exists because there are finitely many *i*'s). Set $\delta = \frac{\kappa}{N}$.

The claim is that for all $m, n \in \mathbb{N}$, such that $\frac{|m-nx_0|}{n} < \delta$, necessarily n > N. Assume that $n \le N$. By the construction above $|m - nx_0| \ge k$, so $\frac{|m-nx_0|}{n} \ge \frac{|m-nx_0|}{N} \ge \frac{k}{N} = \delta, \text{ contradiction. So } n \ge N.$ Since $n \ge N, n \ge \frac{1}{\epsilon}, \text{ so } f(\frac{m}{n}) < \epsilon, \text{ for all } m, n \text{ such that } |\frac{m}{n} - x_0| < \delta.$

This finishes the proof that f is continuous at irrational x_0 .

Now let x'_0 be a rational number. By the same argument as before, one can show that $\lim_{x\to x'_0} f(x) = 0$. (The argument is identical, because we only consider, as we should, rationals $\frac{m}{n} \neq x'_0$, which makes all $k_i > 0$ again.)

But since $f(x'_0) \neq 0$, it follows that f is discontinuous at x'_0 , and the discontinuity is of the first kind (the one sided limits exist).

5. Let X be a compact subset of \mathbb{R} and $f: X \to \mathbb{R}$ be a function. Define the qraph of f to be the set

$$\mathcal{G}(f) = \{ (x, f(x)) : x \in X \}.$$

Prove that f is continuous on X if and only if $\mathcal{G}(f)$ is compact.

Solution. Assume first the $\mathcal{G}(f)$ is compact. Assume, by contradiction, that f is discontinuous at $x_0 \in X$. This means that there exists $\epsilon > 0$, and a sequence $\{x_n\} \subset X$, such that $\{x_n\}$ converges to x_0 (for example, $d(x_n, x_0) < d(x_n, x_0) < d(x_n, x_0)$) $\frac{1}{n}$ but $d(f(x_n), f(x_0)) \geq \epsilon$, for all n. Consider the sequence $\{(x_n, f(x_n))\} \subset$ $\mathcal{G}(f)$. Since $\mathcal{G}(f)$ is compact, this must have subsequence $\{(x_{n_k}, f(x_{n_k}))\}$ which converges to a point $(x_1, f(x_1)) \in \mathcal{G}(f)$. In particular, $\{x_{n_k}\}$ converges to x_1 . By uniqueness of the limit, $x_1 = x_0$. But then $\{f(x_{n_k})\}$ converges to $f(x_0)$, which is a contradiction with the construction of $\{x_n\}$.

Note that apparently we didn't use that X is compact in this proof. But this is in fact a necessary consequence of the fact that $\mathcal{G}(f)$ is compact. This is because the first projection function $pr_1: \mathcal{G}(f) \to X, (x, f(x)) \mapsto x$, is continuous and surjective.

Conversely, let's assume first that f is continuous. Then f(X) is compact. Consider the set $E = X \times f(X) = \{(x, y) : x \in X, y \in f(X)\}$. Clearly $\mathcal{G}(f) \subset$ E. Moreover, $\mathcal{G}(f)$ is closed in E: let $(x_0, y_0) \in E$ be a limit point of $\mathcal{G}(f)$. There exists a sequence $\{(x_n, f(x_n)\} \subset \mathcal{G}(f)$ which converges to (x_0, y_0) . This means that $\{x_n\}$ converges to x_0 , and $\{f(x_n)\}$ converges to y_0 . Since f is continuous, it must be that $y_0 = f(x_0)$, equivalently $(x_0, y_0) \in \mathcal{G}(f)$.

We would like to claim that E is compact, and therefore $\mathcal{G}(f)$ is compact, being closed in E. If E is a subset of the Euclidean \mathbb{R}^2 , then it is easy to verify the Heine-Borel theorem for E. The boundedness is immediate: if Xand f(X) are bounded, then each is a subset of a 1-cell, therefore E is a subset of some 2-cell. If (x, y) is a limit point of E in \mathbb{R}^2 , then x is a limit point for X, therefore $x \in X$, and similarly y is a limit point of f(X), so $y \in f(X)$.

Extra problem: Continuous extensions: ex 13 pp 99-100.

Solution. The solution will be posted on Thursday because of the CI-M assignment this week.