
HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 7: Solutions.

1. Let n be an arbitrary positive integer. Using the definitions, prove
that the function f : [−1, 1] → R, f(x) = xn is uniformly continuous.

Solution. For every x, y ∈ [−1, 1], we have |f(x) − f(y)| = |xn − yn| =
|x − y| · |xn−1 + xn−2y + · · · + yn−1|. Since |xn−1 + xn−2y + · · · + yn−1| ≤
|x|n−1 + |x|n−2|y| + · · · + |y|n−1 ≤ n, for all x, y ∈ [−1, 1], we find that

|f(x) − f(y)| ≤ n|x − y|, for all x, y ∈ [−1, 1].

Let ε > 0 be given. Set δ = ε/n. For every x, y in [−1, 1], such that |x−y| < δ,
it follows that |f(x) − f(y)| < ε.

In conclusion, f(x) is uniformly continuous.

2. Let f : [0, 1] → [0, 1] be a continuous function. Prove that f has a
fixed point, i.e., there exists x ∈ [0, 1], such that f(x) = x.

Solution. Consider the function g(x) : [0, 1] → R, g(x) = f(x) − x.
Since f([0, 1]) ⊂ [0, 1], g(0) = f(0) ≥ 0, and g(1) = f(1) − 1 ≤ 0. So
g(1) ≤ 0 ≤ g(0). The function g(x) is continuous (because f(x) is), so
by the intermediate value property, there exists x, 0 ≤ x ≤ 1, such that
g(x) = 0 (equivalently f(x) = x).

3. Let f, g : X → Y be continuous functions, and let E be a dense subset
of X.

(1) Prove that f(E) is dense in f(X).

(2) If f(p) = g(p) for all p ∈ E, prove that f(x) = g(x) for all x ∈ X.

(In other words, this exercise shows that a continuous function is determined
by its values on a dense subset of its domain.)

Solution. (a) We prove that every open subset of f(X) intersects f(E).
Let V be an open subset of f(X). There exists V ′ open in Y , such that
V ′ ∩ f(X) = V . Since f : X → Y is continuous, f−1(V ′) is open in
X. Then f−1(V ′) ∩ E 6= ∅, because E is dense in X. This implies that
f(f−1(V ′))∩f(E) 6= ∅. But f(f−1(V ′)) ⊂ V ′, and so V ∩f(E) = V ′∩f(E) 6=
∅.

(b) Let x ∈ X be arbitrary. From the density of E, we know that there
exists a sequence {pn} ⊂ E, such that limn→∞ pn = x. For every n, f(pn) =
g(pn), and by the continuity of f and g, it follows that f(x) = g(x).

4. Recall that every rational number x ∈ Q, x 6= 0, can be written
uniquely in a reduced form x = m

n
, where m,n ∈ Z, n > 0. For x = 0, take

n = 1. Consider the function f : R → R, defined by

f(x) =

{

0, if x /∈ Q,
1

n
, if x = m

n
∈ Q.

(1) Prove that f is continuous at every irrational point.
(2) Prove that f is discontinuous at every rational point.
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Solution. Let x0 be an irrational number. Let ε > 0, we want to find
δ > 0, such that |f(x) − 0| < ε, whenever |x − x0| < δ. Note that if x
is irrational, then |f(x)| = 0, so the question is how to choose δ so that
the inequality holds for rational x = m

n
as well (in that case, |f(x)| = 1

n
).

Intuitively, if m

n
is close to x0 irrational, then n must be large, but we need

to formalize this.
Let N be a natural number, such that N > 1

ε
. If x = m

n
, |x − x0| =

|m−nx0|
n

. For every i = 1, . . . , N , define ki to be the minimum of the set
{|m − ix0| : m ∈ N}. Note that although this set is infinite, the minimum
exists (it comes from the fact that N is discrete). Moreover, since x0 is
irrational, ki > 0.

Now let k > 0 be the minimum of all ki (here the minimum exists because
there are finitely many i’s). Set δ = k

N
.

The claim is that for all m,n ∈ N, such that |m−nx0|
n

< δ, necessarily
n > N. Assume that n ≤ N. By the construction above |m − nx0| ≥ k, so
|m−nx0|

n
≥ |m−nx0|

N
≥ k

N
= δ, contradiction. So n ≥ N.

Since n ≥ N, n ≥ 1

ε
, so f(m

n
) < ε, for all m,n such that |m

n
− x0| < δ.

This finishes the proof that f is continuous at irrational x0.

Now let x′
0

be a rational number. By the same argument as before, one
can show that limx→x′

0
f(x) = 0. (The argument is identical, because we only

consider, as we should, rationals m

n
6= x′

0
, which makes all ki > 0 again.)

But since f(x′
0
) 6= 0, it follows that f is discontinuous at x′

0
, and the

discontinuity is of the first kind (the one sided limits exist).

5. Let X be a compact subset of R and f : X → R be a function. Define
the graph of f to be the set

G(f) = {(x, f(x)) : x ∈ X}.

Prove that f is continuous on X if and only if G(f) is compact.
Solution. Assume first the G(f) is compact. Assume, by contradiction,

that f is discontinuous at x0 ∈ X. This means that there exists ε > 0, and a
sequence {xn} ⊂ X, such that {xn} converges to x0 (for example, d(xn, x0) <
1

n
) but d(f(xn), f(x0)) ≥ ε, for all n. Consider the sequence {(xn, f(xn))} ⊂

G(f). Since G(f) is compact, this must have subsequence {(xnk
, f(xnk

))}
which converges to a point (x1, f(x1)) ∈ G(f). In particular, {xnk

} converges
to x1. By uniqueness of the limit, x1 = x0. But then {f(xnk

)} converges to
f(x0), which is a contradiction with the construction of {xn}.

Note that apparently we didn’t use that X is compact in this proof. But
this is in fact a necessary consequence of the fact that G(f) is compact. This
is because the first projection function pr1 : G(f) → X, (x, f(x)) 7→ x, is
continuous and surjective.

Conversely, let’s assume first that f is continuous. Then f(X) is compact.
Consider the set E = X×f(X) = {(x, y) : x ∈ X, y ∈ f(X)}. Clearly G(f) ⊂
E. Moreover, G(f) is closed in E : let (x0, y0) ∈ E be a limit point of G(f).
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There exists a sequence {(xn, f(xn)} ⊂ G(f) which converges to (x0, y0).
This means that {xn} converges to x0, and {f(xn)} converges to y0. Since
f is continuous, it must be that y0 = f(x0), equivalently (x0, y0) ∈ G(f).

We would like to claim that E is compact, and therefore G(f) is compact,
being closed in E. If E is a subset of the Euclidean R2, then it is easy to
verify the Heine-Borel theorem for E. The boundedness is immediate: if X
and f(X) are bounded, then each is a subset of a 1-cell, therefore E is a
subset of some 2-cell. If (x, y) is a limit point of E in R2, then x is a limit
point for X, therefore x ∈ X, and similarly y is a limit point of f(X), so
y ∈ f(X).

Extra problem: Continuous extensions: ex 13 pp 99-100.
Solution. The solution will be posted on Thursday because of the CI-M

assignment this week.


