HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007 ASSIGNMENT 7: DUE THURSDAY, APRIL 5, AT 11:00 IN 2-108.

Please remember to tell us which lecture section you are in (Ciubotaru, Melrose, or Parker).

- (1) (10 points) Let n be an arbitrary positive integer. Using the definitions, prove that the function $f: [-1,1] \to \mathbb{R}, f(x) = x^n$ is uniformly continuous.
- (2) (10 points) Let $f : [0,1] \to [0,1]$ be a continuous function. Prove that f has a fixed point, i.e., there exists $x \in [0,1]$, such that f(x) = x.
- (3) (15 points) Let $f, g: X \to Y$ be continuous functions, and let E be a dense subset of X.
 - (a) Prove that f(E) is dense in f(X).
 - (b) If f(p) = g(p) for all $p \in E$, prove that f(x) = g(x) for all $x \in X$.

(In other words, this exercise shows that a continuous function is determined by its values on a dense subset of its domain.)

(4) (15 points) Recall that every rational number $x \in \mathbb{Q}, x \neq 0$, can be written uniquely in a reduced form $x = \frac{m}{n}$, where $m, n \in \mathbb{Z}, n > 0$. For x = 0, take n = 1. Consider the function $f : \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q}, \\ \frac{1}{n}, & \text{if } x = \frac{m}{n} \in \mathbb{Q}. \end{cases}$$

- (a) Prove that f is continuous at every irrational point.
- (b) Prove that f is discontinuous at every rational point.
- (5) (10 points) Let X be a compact subset of \mathbb{R} and $f: X \to \mathbb{R}$ be a function. Define the graph of f to be the set

$$\mathcal{G}(f) = \{ (x, f(x)) : x \in X \}.$$

Prove that f is continuous on X if and only if $\mathcal{G}(f)$ is compact.

(The same statement holds if $f : X \to Y$, with X, Y arbitrary metric spaces and X compact; you don't need to prove the general statement in this assignment.)

Extra problem: Continuous extensions: ex 13 pp 99-100.