HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 5: Solutions.

1. Let £ be the set of bounded sequences of real numbers, i.e., a = {a;}
such that sup{|a;| : ¢ =1,2,3,...} < oo. Define d(a,b) = sup{|a; —b;| : i =
1,2,3,...}.

(1) Check that ¢*° is a metric space.

(2) Show that the unit ball, B(0,1) = {a : d(0,a) < 1}, is both closed
and bounded.

(3) Prove that the unit ball is not compact. (Therefore, the Heine-Borel
theorem is false in £°°.) Hint: Produce an infinite set in B(0, 1) with
no limit point.

Solution. (1) We need to check that d satisfies the axioms of a metric
function:

(i) d(a,b) > 0 being defined as the supremum over a set of nonnegative
numbers. Clearly d(a,a) = 0. Moreover, if a # b, there exists i such that
a; # b;. Then d(a,b) > |a; — b;| > 0.

(ii) d(a,b) = d(b,a) since |a; — b;| = |b; — a;| for every i.

(iii) We check the triangle inequality for the sequences a, b, c. For every 1,

la; — i < lai —bi| + |bi — ¢i| < d(a,b) +d(b,c).

(The first inequality is the triangle inequality in R!, and the second is the
fact that x < supF for every element z is a bounded set E.) This shows that
d(a,b) + d(b, c) is an upper bound for {|a; —¢;| : i > 1}, and by therefore by
the property of the supremum

d(a,b) + d(b,c) > d(a,c).

(ii) This comes from a general fact, true in every metric space: any closed
ball is closed and bounded. See your class notes or Rudin.
(iii) Consider the sequence {z,,}, defined by

z,=(1,1,...,1,0,0,...,0,...).
———

n

For every n, d(0,z,) < 1, so z,, € B(0,1).

The key observation is that whenever n # m, d(z,,,z,,) = 1. It implies
that no subsequence of {z, } is convergent (maybe the easiest way to see
this is because no subsequence is Cauchy), and therefore the set {z, } has
no limit point, and thus B(0, 1) cannot be compact

2. Let E be the set of all = € [0, 1] whose decimal expansion contains only
the digits 4 and 7.
(1) Is E dense in [0, 1]7
(2) Is E compact?
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Prove your answers.

Solution. (1) No. Since every element € E contains only 4 and 7 in
the decimal expansion, inf £ = 0.444... and sup E = 0.777.... Therefore
E is not dense in [0, 1]. For example, the open interval (0,0.444...) does
not contain any point of F.

(2) Yes. Note that [0,1] is compact, and therefore it is sufficient to check
only if E is closed in [0,1]. By way of contradiction, let’s assume that
x* € [0,1] is a limit point of E, but z* ¢ E. Therefore, there exists a first
decimal digit of x different than 4 or 7. Assume this decimal is a at position
n. Choose € = 107"~ 1. If a € {0,1,2,9}, then the distance between z* and
any point of E is at least 10e. Otherwise, the distance between x* and any
point of E is at least 2¢. In any case, (z* — ¢,2* +¢) N E = (), which is a
contradiction.

3. Let A and B be two connected subsets of a metric space X. Assume
that AN B # (. Prove that AU B is also connected.

Solution. Let us assume, by contradiction, that A U B is disconnected.
Then there exist two nonempty separated subsets C' and D, such that A U
B = CUD. (Recall that “separated” means that CND = () and CND = (.)

Define Ay = ANC and As = AN D, and similarly By, By. Clearly A =
Ay U Ay. Moreover, A; and Aj are separated, e.g., AiN Ay, C CND = (.
Since A is connected, necessarily either A7 or As must be empty, and the
other one all of A. Assume, without loss of generality, that A; = (), and
Ay = A. Equivalently, AN C = () (which immediately implies C' C B) and
AcCD.

The same argument with By and By suggests that one of By or By must
be empty. Since BN C = C # (), the only choice is Bo = BN D = (). Now
this implies that D C A and B C C.

But then A = D and B = C, which is a contradiction since C' and D are
separated, but AN B # (). (Note that the hypothesis in the problem may be
weakened by requiring only that A and B not be separated.)

4. Suppose {z,} is a Cauchy sequence in a metric space X, and some
subsequence {z,, } converges to a point z € X. Prove that the full sequence
{z,} converges to x.

Solution. Let € > 0 be arbitrary. Since {z,,} converges, there exists
Ny > 0 such that d(xy,,z) < §, for all n; > N;. The fact that {z,} is a
Cauchy sequence implies that there exists N > 0 such that d(z,,z,) < §,
for all n > N and m > N.

Let n;, be such that n;, > max{Ny, N'}. This guarantees that d(zy, ,z) <
5 and d(zy, T, ) < 5, for all n > N. Then, by the triangle inequality, for
every n > N,

€ €
d(Tn, ) < d(2n, Tn, ) + d(2p,, ) < 3 + 3 =€

Therefore, x,, converges to x.



5. If s1 = /2, and

Sp41 = 2+\/5n7 nZL

prove that

(1) 0 < sy, <2foralln>1;
(2) {sn} converges.

Solution. We will show that {s,} is both monotonically increasing and
bounded. Therefore it is convergent.

(a) We'll prove by induction on n that 0 < s, < 2 for all n. This is
satisfied for n = 1 since 51 = /2. Let us assume that 0 < s,, < 2. Then

Spa1 = /2 + /5, < V2 +v2 <2+ 2 =2. Clearly Sn+1 > 0 also.

(b) Now let’s show that {s,} is increasing by induction. First, s; = /2

and sg = \/2+ v/ V2, and so ss > sj. Assume s, > S,_1. Then Sp4l =
V2+ /50 > \/2+ \/5n1 = sn.

Ezxtra problem: This is for your amusement, and not to be handed in.
Baire’s theorem. Let X be a nonempty complete metric space, and {G,}
be a sequence of dense open subsets of X. Prove that N72 G, is not empty.
(In fact, the intersection is also dense.)

Solution. We’'ll prove first a lemma.

Lemma. Let X be a complete metric space, and Fy D Fo C F3 D --- D F,; D

Fo11 D ... a chain of nonempty closed sets such that lim,,_,, diam F, = 0.
Then N4 Fy, # 0.

Proof. For every n > 1, choose x,, € F,, arbitrarily.Note that, if n < m, then
d(p, ) < diam F,, since z,,xy, € F,. Let € > 0 be given. There exists
N > 0 such that diam Fy < €. For all n > N and m > N, we have z,, € Fy
and z,, € Fy, and therefore d(x,,,x,,) < €. This shows that the sequence
{z,} is Cauchy in X, and, X being complete, it converges to some = € X.

We claim that x € F,, for every m. Indeed, for every m, the point z is also
the limit of the sequence {Z,, Ty i1, Tm+2,- .. }. This sequence is contained
in F},, which is closed, and thus = € F,,.

In conclusion, z € N2 F,,. (In fact, N>, F,, = {z}, otherwise there will
be a contradiction with lim,,_,., diam F,, = 0.

O

Now, let {G,} be a sequence of dense open subsets in X. Recall that a
set G is dense in X if GN E # () for all open nonempty subsets F C X.

To show that N2 1G # (), we will construct a sequence of neighborhoods
Va, n > 1, such that VoCGryoand Vi D VoD - DV, DVpp1 D and
lim,,_,oo diam V,, = 0. Then by the previous lemma, applied to {Vn}, we
would find that NG, 2 NS, V,, # 0.



The neighborhoods V;, are constructed as follows. First choose an arbi-
trary point € G1. Since G is open, there exists a ball B(z,0) C G1. Set
Vi = B(z,3), so that V; C B(x,8) C G1. Note that diam Vi = 3.

Since G5 is dense, there exists a point y in the open set Go N Vi. We
find a ball B(y,r) C G2 NVi. Let V be the open ball B(y,r’), where r' =
min{7, 2%} This choice ensures that Vi C B(y,r) C G, and diamVs < 2%.

We continue in this fashion, constructing inductively V,, using G,, and
Vp—1. Then V, C G,, and diam V, < 2%. The sequence {V,,} has the
desired properties. This concludes the proof of NS, G,, # 0.

To show that, in fact, N7 G, is actually dense is not much harder. One
only needs to alter the above proof in the initial step. We need to prove
that for every open nonempty set £ C X, we have EN NGy # 0. The
only change is that we choose z € G1 N E (this is possible, since G is dense)
and the ball B(z,d) C G1 N E (this is possible since G; N E is open). The
rest is the same.



