
HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 5: Solutions.

1. Let `∞ be the set of bounded sequences of real numbers, i.e., a = {ai}
such that sup{|ai| : i = 1, 2, 3, . . . } < ∞. Define d(a, b) = sup{|ai − bi| : i =
1, 2, 3, . . . }.

(1) Check that `∞ is a metric space.
(2) Show that the unit ball, B(0, 1) = {a : d(0, a) ≤ 1}, is both closed

and bounded.
(3) Prove that the unit ball is not compact. (Therefore, the Heine-Borel

theorem is false in `∞.) Hint: Produce an infinite set in B(0, 1) with
no limit point.

Solution. (1) We need to check that d satisfies the axioms of a metric
function:

(i) d(a, b) ≥ 0 being defined as the supremum over a set of nonnegative
numbers. Clearly d(a, a) = 0. Moreover, if a 6= b, there exists i such that
ai 6= bi. Then d(a, b) ≥ |ai − bi| > 0.

(ii) d(a, b) = d(b, a) since |ai − bi| = |bi − ai| for every i.
(iii) We check the triangle inequality for the sequences a, b, c. For every i,

|ai − ci| ≤ |ai − bi| + |bi − ci| ≤ d(a, b) + d(b, c).

(The first inequality is the triangle inequality in R
1, and the second is the

fact that x ≤ supE for every element x is a bounded set E.) This shows that
d(a, b) + d(b, c) is an upper bound for {|ai − ci| : i ≥ 1}, and by therefore by
the property of the supremum

d(a, b) + d(b, c) ≥ d(a, c).

(ii) This comes from a general fact, true in every metric space: any closed
ball is closed and bounded. See your class notes or Rudin.

(iii) Consider the sequence {xn}, defined by

xn = (1, 1, . . . , 1
︸ ︷︷ ︸

n

, 0, 0, . . . , 0, . . . ).

For every n, d(0, xn) ≤ 1, so xn ∈ B(0, 1).
The key observation is that whenever n 6= m, d(xn , xm) = 1. It implies

that no subsequence of {xn} is convergent (maybe the easiest way to see
this is because no subsequence is Cauchy), and therefore the set {xn} has
no limit point, and thus B(0, 1) cannot be compact

2. Let E be the set of all x ∈ [0, 1] whose decimal expansion contains only
the digits 4 and 7.

(1) Is E dense in [0, 1]?
(2) Is E compact?
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Prove your answers.

Solution. (1) No. Since every element x ∈ E contains only 4 and 7 in
the decimal expansion, inf E = 0.444 . . . and supE = 0.777 . . . . Therefore
E is not dense in [0, 1]. For example, the open interval (0, 0.444 . . . ) does
not contain any point of E.

(2) Yes. Note that [0, 1] is compact, and therefore it is sufficient to check
only if E is closed in [0, 1]. By way of contradiction, let’s assume that
x∗ ∈ [0, 1] is a limit point of E, but x∗ /∈ E. Therefore, there exists a first
decimal digit of x different than 4 or 7. Assume this decimal is a at position
n. Choose ε = 10−n−1. If a ∈ {0, 1, 2, 9}, then the distance between x∗ and
any point of E is at least 10ε. Otherwise, the distance between x∗ and any
point of E is at least 2ε. In any case, (x∗ − ε, x∗ + ε) ∩ E = ∅, which is a
contradiction.

3. Let A and B be two connected subsets of a metric space X. Assume
that A ∩ B 6= ∅. Prove that A ∪ B is also connected.

Solution. Let us assume, by contradiction, that A ∪ B is disconnected.
Then there exist two nonempty separated subsets C and D, such that A ∪
B = C∪D. (Recall that “separated” means that C∩D = ∅ and C∩D = ∅.)

Define A1 = A ∩ C and A2 = A ∩ D, and similarly B1, B2. Clearly A =
A1 ∪ A2. Moreover, A1 and A2 are separated, e.g., A1 ∩ A2 ⊂ C ∩ D = ∅.
Since A is connected, necessarily either A1 or A2 must be empty, and the
other one all of A. Assume, without loss of generality, that A1 = ∅, and
A2 = A. Equivalently, A ∩ C = ∅ (which immediately implies C ⊂ B) and
A ⊂ D.

The same argument with B1 and B2 suggests that one of B1 or B2 must
be empty. Since B ∩ C = C 6= ∅, the only choice is B2 = B ∩ D = ∅. Now
this implies that D ⊂ A and B ⊂ C.

But then A = D and B = C, which is a contradiction since C and D are
separated, but A∩B 6= ∅. (Note that the hypothesis in the problem may be
weakened by requiring only that A and B not be separated.)

4. Suppose {xn} is a Cauchy sequence in a metric space X, and some
subsequence {xni

} converges to a point x ∈ X. Prove that the full sequence
{xn} converges to x.

Solution. Let ε > 0 be arbitrary. Since {xni
} converges, there exists

N1 > 0 such that d(xni
, x) < ε

2
, for all ni > N1. The fact that {xn} is a

Cauchy sequence implies that there exists N > 0 such that d(xn, xm) < ε

2
,

for all n ≥ N and m ≥ N.
Let ni0 be such that ni0 ≥ max{N1, N}. This guarantees that d(xni0

, x) <
ε

2
and d(xn, xni0

) < ε

2
, for all n ≥ N. Then, by the triangle inequality, for

every n ≥ N,

d(xn, x) ≤ d(xn, xni0
) + d(xni0

, x) <
ε

2
+

ε

2
= ε.

Therefore, xn converges to x.
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5. If s1 =
√

2, and

sn+1 =
√

2 +
√

sn, n ≥ 1,

prove that

(1) 0 < sn < 2 for all n ≥ 1;
(2) {sn} converges.

Solution. We will show that {sn} is both monotonically increasing and
bounded. Therefore it is convergent.

(a) We’ll prove by induction on n that 0 < sn < 2 for all n. This is
satisfied for n = 1 since s1 =

√
2. Let us assume that 0 < sn < 2. Then

sn+1 =
√

2 +
√

sn <
√

2 +
√

2 <
√

2 + 2 = 2. Clearly sn+1 > 0 also.

(b) Now let’s show that {sn} is increasing by induction. First, s1 =
√

2

and s2 =

√

2 +
√√

2, and so s2 > s1. Assume sn > sn−1. Then sn+1 =
√

2 +
√

sn >
√

2 +
√

sn−1 = sn.

Extra problem: This is for your amusement, and not to be handed in.
Baire’s theorem. Let X be a nonempty complete metric space, and {Gn}
be a sequence of dense open subsets of X. Prove that ∩∞

n=1Gn is not empty.
(In fact, the intersection is also dense.)

Solution. We’ll prove first a lemma.

Lemma. Let X be a complete metric space, and F1 ⊃ F2 ⊂ F3 ⊃ · · · ⊃ Fn ⊃
Fn+1 ⊃ . . . a chain of nonempty closed sets such that limn→∞ diam Fn = 0.
Then ∩∞

n=1Fn 6= ∅.

Proof. For every n ≥ 1, choose xn ∈ Fn arbitrarily.Note that, if n < m, then
d(xn, xm) ≤ diam Fn, since xn, xm ∈ Fn. Let ε > 0 be given. There exists
N > 0 such that diam FN < ε. For all n ≥ N and m ≥ N, we have xn ∈ FN

and xm ∈ FN , and therefore d(xn, xm) < ε. This shows that the sequence
{xn} is Cauchy in X, and, X being complete, it converges to some x ∈ X.

We claim that x ∈ Fm for every m. Indeed, for every m, the point x is also
the limit of the sequence {xm, xm+1, xm+2, . . . }. This sequence is contained
in Fm, which is closed, and thus x ∈ Fm.

In conclusion, x ∈ ∩∞

n=1Fn. (In fact, ∩∞

n=1Fn = {x}, otherwise there will
be a contradiction with limn→∞ diam Fn = 0.

�

Now, let {Gn} be a sequence of dense open subsets in X. Recall that a
set G is dense in X if G ∩ E 6= ∅ for all open nonempty subsets E ⊂ X.

To show that ∩∞

n=1Gn 6= ∅, we will construct a sequence of neighborhoods
Vn, n ≥ 1, such that V n ⊂ Gn, and V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ Vn+1 ⊃ . . . , and
limn→∞ diam Vn = 0. Then by the previous lemma, applied to {V n}, we
would find that ∩∞

n=1Gn ⊇ ∩∞

n=1V n 6= ∅.
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The neighborhoods Vn are constructed as follows. First choose an arbi-
trary point x ∈ G1. Since G1 is open, there exists a ball B(x, δ) ⊂ G1. Set
V1 = B(x, δ

2
), so that V 1 ⊂ B(x, δ) ⊂ G1. Note that diam V1 = δ

2
.

Since G2 is dense, there exists a point y in the open set G2 ∩ V1. We
find a ball B(y, r) ⊂ G2 ∩ V1. Let V2 be the open ball B(y, r′), where r′ =
min{ r

2
, δ

22 }. This choice ensures that V 2 ⊂ B(y, r) ⊂ G2, and diamV2 ≤ δ

22 .
We continue in this fashion, constructing inductively Vn using Gn and

Vn−1. Then V n ⊂ Gn, and diam Vn ≤ δ

2n . The sequence {Vn} has the
desired properties. This concludes the proof of ∩∞

n=1Gn 6= ∅.
To show that, in fact, ∩∞

n=1Gn is actually dense is not much harder. One
only needs to alter the above proof in the initial step. We need to prove
that for every open nonempty set E ⊂ X, we have E ∩ ∩∞

n=1GN 6= ∅. The
only change is that we choose x ∈ G1∩E (this is possible, since G1 is dense)
and the ball B(x, δ) ⊂ G1 ∩ E (this is possible since G1 ∩ E is open). The
rest is the same.


