HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007 ASSIGNMENT 4: DUE THURSDAY 1 MARCH, AT 11:00 IN 2-108.

Please remember to tell us which lecture section you are in (Ciubotaru, Melrose, or Parker).

- (1) (20 points) For E any subset of a metric space X, define E° to be the union of all open sets contained inside E.
 - (a) Show that E° is open.

 E° is a union of open sets, and is therefore open, as an arbitrary union of open sets is open.

(b) Show that E° is equal to the set of all interior points of E (in other words the set of points $p \in E$ so that there exists some r > 0 so that the open ball $B_r(p)$ of radius r centered on p is contained in E.)

If $p \in E^{\circ}$, then there exists an open ball $B_r(p)$ centered on p contained inside E° . As E° is a union of sets contained inside $E, E^{\circ} \subset E$. Therefore, $B_r(p) \subset E$, and p is an interior point of E. We have now shown that E° is contained in the set of interior points of E, and must show that E° contains all interior points.

Suppose that p is an interior point of E. Therefore there is some open ball $B_r(p)$ containing p which is contained in E. This open ball is an open subset of E, so E° is the union of $B_r(p)$ with all the other open subsets of E. This means that $E^{\circ} \supset B_r(p)$, and therefore $p \in E$.

(c) Show that the complement of E° , $X - E^{\circ}$ is the closure of the complement of E.

 E° is union of all open sets contained inside E. The complement of E° is therefore the intersection of the compliment of all open sets contained inside E. U is an open set contained inside E if and only if X - U is a closed set containing X - E. The complement of E° is therefore the intersection of all closed sets containing the complement of E, which is the closure of the complement of E.

(d) Do E° and E have the same closures?

No. If $E := \{0\} \subset \mathbb{R}$, then $E^{\circ} = \emptyset$. The closure of this is \emptyset . On the other hand, the closure of E is $\{0\}$.

(2) (10 points) Show that the subset of \mathbb{R} given by

$$E := \left\{ 0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\}$$

is compact.

Let $\{U_{\alpha} \text{ for } \alpha \in A\}$ be some open cover of $E \subset \mathbb{R}$. We must show that there exists a finite subcover.

First, at least one of these open sets U_{α_0} must contain 0. As U_{α_0} is open and contains 0, there exists some r > 0 so that $(-r, r) \subset U_{\alpha}$.

We know that there exists some number $n \in \mathbb{N}$ so that $n > \frac{1}{r}$. This means that $\frac{1}{m} \subset U_{\alpha_0}$ for all $m \ge n$.

For any $k \in \mathbb{N}$, there must be some $U_{\alpha_k} \in \{U_\alpha\}$ so that $\frac{1}{k} \subset U_{\alpha_k}$. The finite cover of E which we want is given by

$$\{U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_{n-1}}\}$$

Another way to prove that E is compact is by proving that it is a closed, bounded subset of \mathbb{R} . For a full score, the proof that E is closed must be included.

(3) (10 points) Show that if $C_{\alpha} \subset X$ is a compact subset of X for all $\alpha \in A$, then

$$C := \bigcap_{\alpha \in A} C_{\alpha}$$

is compact.

Recall that any compact subset is closed. C is an intersection of closed sets, and is therefore closed. For any C_{α} , C is a closed subset of C_{α} . As closed subsets of a compact space are compact, C is compact.

- (4) (20 points) Suppose that the metric space X has a countable dense subset Q (In other words, a countable subset Q so that the closure $\bar{Q} = X$.)
 - (a) Show that any open subset of X is a union of open balls $B_r(q)$ where $r \in \mathbb{Q}$ and $q \in Q$.

The fact that $Q \subset X$ is dense implies that any nonempty open set $U \subset X$ must contain some member of Q. (This follows from the fact that the complement of U is a closed set which is a proper subset of the closure of Q, and thus must not contain all of Q.)

Suppose that $p \in U$ where U is an open set. We must prove that $p \in B_r(q)$ for some $r \in \mathbb{Q}$ and $q \in Q$ so that $B_r(q) \subset U$. Then U is equal to the union of all these open balls. First note that there exists some $\epsilon > 0$ so that $B_{\epsilon}(p) \subset U$. As $B_{\frac{\epsilon}{2}}$ is an open set, it must contain some $q \in Q$. Choose r to be a rational number so that $d(p,q) < r < \frac{\epsilon}{2}$. Then $p \in B_r(q)$ and $B_r(q) \subset B_{\epsilon}(p) \subset U$. This follows from the fact that for all $x \in B_r(q)$, the triangle inequality tells us that

$$d(p,x) \le d(p,q) + d(q,x) < \epsilon$$

(b) Show that any open cover of X has a sub cover which is either countable or finite.

First note that the set \mathcal{B} of open balls $B_r(q)$ where $r \in \mathbb{Q}$ and $q \in Q$ is a countable union of countable sets, and is hence countable. Suppose that $\{U_\alpha\}$ is an open cover of X. We have shown that each of these open sets is some union of open balls $B_r(q) \in \mathcal{B}$. Define $E \subset \mathcal{B}$ to be the set of such open balls that is contained in one of these $\{U_\alpha\}$. As it is a subset of a countable set, it is either contable or finite. The union of all $B_r(q) \in E$ is X. For each $B_r(q) \in E$, choose some U_α from our cover contining $B_r(q)$. The set of all such U_α is equal to the union of all $B_r(q) \in E$, which is X. The set of these chosen U_α is a subcover with cardinality less than or equal to E, and is therefore either countable or finite.

Extra problem: This is for your amusement, and not to be handed in.

(1) Call a metric d on \mathbb{R}^n compatible with the vector space structure if

$$d(x+z, y+z) = d(x, y)$$
 for all $x, y, z \in \mathbb{R}^n$

and

$$d(\lambda x, \lambda y) = \lambda d(x, y)$$
 for $\lambda \in [0, \infty)$

Prove that any such metric puts the same topology on \mathbb{R}^n as the Euclidean metric, in the sense that a subset of \mathbb{R}^n is open with this metric if and only if it is open with the Euclidean metric.

We shall show that there exist constants $c_1 > 0$ and $c_2 > 0$ so that

$$c_1 d(x, y) \le ||x - y|| \le c_2 d(x, y)$$

This will imply that inside every open Euclidean ball there is an open d ball, which means that any Euclidean open set is an open set with the metric d. The other inequality implies that inside every open d ball there is an open Euclidean ball, which implies that any set open with the metric d is open with the Euclidean metric.

First let $\lambda = \min_i d(0, e_i) > 0$ where e_i is the *i*th standard basis vector of \mathbb{R}^n (with the *i*th coordinate 1 and the other coordinates zero.) Then by the triangle inequality, we have that

$$d(0,x) \le \sum_{i=1}^{n} d(0,x_i e_i)$$

where x_i is the *i*th coordinate of x. If $x_i > 0$, then $d(0, x_i e_i) = x_i d(0, e_i)$. If $x_i < 0$, then $d(0, x_i e_i) = d(-x_i e_i, 0) = -x_i d(0, e_i)$. Therefore,

$$d(0,x) \le \sum_{i=1}^n |x_i| \lambda \le n\lambda ||x||$$

So if we set $c_1 = \frac{1}{n\lambda}$, the we have our first inequality:

$$c_1 d(x, y) = c_1 d(0, x - y) \le ||x - y||$$

What we now want is some c_2 so that $c_2d(x, y) \ge ||x-y|$, or equivalently, $d(x, 0) \ge \frac{1}{c_2}$ whenever ||x|| = 1. Consider the unit sphere in \mathbb{R}^n ,

$$S := \{ x \in \mathbb{R}^n \text{ so that } \|x\| = 1 \}$$

This is a closed, and bounded subset of \mathbb{R}^n , so we know that it is compact. Lets try to use this compactness to construct c_2 . For each $x \in S$, consider the Euclidean open set

$$U_x := \left\{ y \in \mathbb{R}^n \text{ so that } \|x - y\| < \frac{c_1 d(x, 0)}{2} \right\}$$

Note that for $y \in U_x$, we have that

$$d(y,0) \ge d(x,0) - d(x,y) > \frac{d(x,0)}{2}$$

Note also that $\{U_x, x \in S\}$ is an Euclidean open cover for S. Therefore, there exists a finite subcover $\{U_{x_1}, \ldots, U_{x_k}\}$. Now we can define c_2 by

$$\frac{1}{c_2} := \frac{1}{2} \min\{d(x_1, 0), \dots, d(x_k, 0)\}$$

We now have the inequality

$$c_2 d(x,0) > 1$$
 for all $x \in S$

and our second inequality follows from the fact that our metric is compatible with the vector space structure.

$$c_2 d(x, y) \ge \|x - y\|$$

Note that we used that n is finite. This is not true in an infinite dimensional vector space.