
HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 4: DUE THURSDAY 1 MARCH, AT 11:00 IN

2-108.

Please remember to tell us which lecture section you are in (Ciubotaru, Melrose,
or Parker).

(1) (20 points) For E any subset of a metric space X, define E◦ to be the union
of all open sets contained inside E.
(a) Show that E◦ is open.

E◦ is a union of open sets, and is therefore open, as an arbitrary union
of open sets is open.

(b) Show that E◦ is equal to the set of all interior points of E (in other
words the set of points p ∈ E so that there exists some r > 0 so that
the open ball Br(p) of radius r centered on p is contained in E .)

If p ∈ E◦, then there exists an open ball Br(p) centered on p contained
inside E◦. As E◦ is a union of sets contained inside E, E◦ ⊂ E.
Therefore, Br(p) ⊂ E, and p is an interior point of E. We have now
shown that E◦ is contained in the set of interior points of E, and must
show that E◦ contains all interior points.
Suppose that p is an interior point of E. Therefore there is some open
ball Br(p) containing p which is contained in E. This open ball is an
open subset of E, so E◦ is the union of Br(p) with all the other open
subsets of E. This means that E◦ ⊃ Br(p), and therefore p ∈ E.

(c) Show that the complement of E◦, X − E◦ is the closure of the com-
plement of E.

E◦ is union of all open sets contained inside E. The complement
of E◦ is therefore the intersection of the compliment of all open sets
contained inside E. U is an open set contained inside E if and only if
X − U is a closed set containing X − E. The complement of E◦ is
therefore the intersection of all closed sets containing the complement
of E, which is the closure of the complement of E.

(d) Do E◦ and E have the same closures?

No. If E := {0} ⊂ R, then E◦ = ∅. The closure of this is ∅. On the
other hand, the closure of E is {0}.
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(2) (10 points) Show that the subset of R given by

E :=
{

0, 1,
1
2
,
1
3
,
1
4
,
1
5
, . . .

}
is compact.

Let {Uα for α ∈ A} be some open cover of E ⊂ R. We must show that
there exists a finite subcover.

First, at least one of these open sets Uα0 must contain 0. As Uα0 is open
and contains 0, there exists some r > 0 so that (−r, r) ⊂ Uα.

We know that there exists some number n ∈ N so that n > 1
r . This

means that 1
m ⊂ Uα0 for all m ≥ n.

For any k ∈ N, there must be some Uαk
∈ {Uα} so that 1

k ⊂ Uαk
. The

finite cover of E which we want is given by

{Uα0 , Uα1 , . . . , Uαn−1}

Another way to prove that E is compact is by proving that it is a closed,
bounded subset of R. For a full score, the proof that E is closed must be
included.

(3) (10 points) Show that if Cα ⊂ X is a compact subset of X for all α ∈ A,
then

C :=
⋂

α∈A

Cα

is compact.

Recall that any compact subset is closed. C is an intersection of closed
sets, and is therefore closed. For any Cα, C is a closed subset of Cα. As
closed subsets of a compact space are compact, C is compact.

(4) (20 points) Suppose that the metric space X has a countable dense subset
Q (In other words, a countable subset Q so that the closure Q̄ = X.)
(a) Show that any open subset of X is a union of open balls Br(q) where

r ∈ Q and q ∈ Q.

The fact that Q ⊂ X is dense implies that any nonempty open set
U ⊂ X must contain some member of Q. (This follows from the fact
that the complement of U is a closed set which is a proper subset of
the closure of Q, and thus must not contain all of Q.)
Suppose that p ∈ U where U is an open set. We must prove that
p ∈ Br(q) for some r ∈ Q and q ∈ Q so that Br(q) ⊂ U . Then U is
equal to the union of all these open balls. First note that there exists
some ε > 0 so that Bε(p) ⊂ U . As B ε

2
is an open set, it must contain

some q ∈ Q. Choose r to be a rational number so that d(p, q) < r < ε
2 .

Then p ∈ Br(q) and Br(q) ⊂ Bε(p) ⊂ U . This follows from the fact
that for all x ∈ Br(q), the triangle inequality tells us that

d(p, x) ≤ d(p, q) + d(q, x) < ε
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(b) Show that any open cover of X has a sub cover which is either count-
able or finite.
First note that the set B of open balls Br(q) where r ∈ Q and q ∈ Q
is a countable union of countable sets, and is hence countable.
Suppose that {Uα} is an open cover of X. We have shown that each of
these open sets is some union of open balls Br(q) ∈ B. Define E ⊂ B
to be the set of such open balls that is contained in one of these {Uα}.
As it is a subset of a countable set, it is either contable or finite. The
union of all Br(q) ∈ E is X. For each Br(q) ∈ E, choose some Uα

from our cover contining Br(q). The set of all such Uα is equal to the
union of all Br(q) ∈ E, which is X. The set of these chosen Uα is
a subcover with cardinality less than or equal to E, and is therefore
either countable or finite.

Extra problem: This is for your amusement, and not to be handed in.
(1) Call a metric d on Rn compatible with the vector space structure if

d(x + z, y + z) = d(x, y) for all x, y, z ∈ Rn

and
d(λx, λy) = λd(x, y) for λ ∈ [0,∞)

Prove that any such metric puts the same topology on Rn as the Euclidean
metric, in the sense that a subset of Rn is open with this metric if and only
if it is open with the Euclidean metric.

We shall show that there exist constants c1 > 0 and c2 > 0 so that

c1d(x, y) ≤ ‖x− y‖ ≤ c2d(x, y)

This will imply that inside every open Euclidean ball there is an open
d ball, which means that any Euclidean open set is an open set with the
metric d. The other inequality implies that inside every open d ball there
is an open Euclidean ball, which implies that any set open with the metric
d is open with the Euclidean metric.

First let λ = mini d(0, ei) > 0 where ei is the ith standard basis vector
of Rn (with the ith coordinate 1 and the other coordinates zero.) Then by
the triangle inequality, we have that

d(0, x) ≤
n∑

i=1

d(0, xiei)

where xi is the ith coordinate of x. If xi > 0, then d(0, xiei) = xid(0, ei).
If xi < 0, then d(0, xiei) = d(−xiei, 0) = −xid(0, ei). Therefore,

d(0, x) ≤
n∑

i=1

|xi|λ ≤ nλ‖x‖

So if we set c1 = 1
nλ , the we have our first inequality:

c1d(x, y) = c1d(0, x− y) ≤ ‖x− y‖
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What we now want is some c2 so that c2d(x, y) ≥ ‖x−y|, or equivalently,
d(x, 0) ≥ 1

c2
whenever ‖x‖ = 1. Consider the unit sphere in Rn,

S := {x ∈ Rn so that ‖x‖ = 1}
This is a closed, and bounded subset of Rn, so we know that it is compact.
Lets try to use this compactness to construct c2. For each x ∈ S, consider
the Euclidean open set

Ux :=
{

y ∈ Rn so that ‖x− y‖ <
c1d(x, 0)

2

}
Note that for y ∈ Ux, we have that

d(y, 0) ≥ d(x, 0)− d(x, y) >
d(x, 0)

2
Note also that {Ux, x ∈ S} is an Euclidean open cover for S. Therefore,
there exists a finite subcover {Ux1 , . . . , Uxk

}. Now we can define c2 by
1
c2

:=
1
2

min{d(x1, 0), . . . , d(xk, 0)}

We now have the inequality

c2d(x, 0) > 1 for all x ∈ S

and our second inequality follows from the fact that our metric is compatible
with the vector space structure.

c2d(x, y) ≥ ‖x− y‖
Note that we used that n is finite. This is not true in an infinite dimen-

sional vector space.


