HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007 ASSIGNMENT 3: DUE THURSDAY 22 FEB, AT 11:00 IN 2-108.

Each problem is worth 10 points.

- (1) Let $E \subset \mathbb{R}$ be an uncountable subset. Show that $[-n, n] \cap E$ must be uncountable for some $n \in \mathbb{N}$.
- (2) Construct a bounded subset of \mathbb{R} with exactly 3 limit points.
- (3) Show that if d is a distance function on a set M then so is

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

- (4) Is every point of an open subset $E \subset \mathbb{R}^2$ a limit point of E?
- (5) What are the real limit points of $E = \{q \in \mathbb{Q}; 0 < q < 1\}$?
- (6) Give an example of a countable collection $U_j \subset \mathbb{R}, j \in \mathbb{N}$, of open sets with $\bigcap_{i \in \mathbb{N}} U_j$ an uncountable *closed* set.
- (7) Let M = [0,1] be a metric space with the discrete metric, d(x,y) = 1 if $x \neq y$, d(x, x) = 0. What are the open sets in M?
 - * Extra Problem for your amusement only.

If you think of the existence of a 1-1 map from A into B as implying that A is 'not bigger than' B, then this exercise shows that if A is not bigger than B and B is not bigger than A, then A and B have the same cardinality.

Schroeder-Bernstein Theorem If A and B are any two sets, f is a 1-1 map from A into B and g is a 1-1 map from B into A, then there exists a map F from A to B which is 1-1 and onto, i.e., $A \sim B$.

Here is an outline of the proof due to Birkhoff and MacLane which you are invited to complete.

- (a) Define 'ancestors' as follows: Consider $a \in A$, if $a \in g(B)$ then we call $g^{-1}(a)$ the first ancestor of a (we call a itself the zeroth ancestor of a). If $g^{-1}(a) \in f(A)$ then we call $f^{-1}(g^{-1}(a))$ the second ancestor of a. If this is in the image of g, then we call $g^{-1}(f^{-1}(g^{-1}(a)))$ the third ancestor of a and so on. Show that this divides A into three disjoint subsets: A_{∞} consisting of the elements that have infinitely many ancestors, A_e consisting of the elements that have an even number of ancestors (including none), and A_o consisting of the elements that have an odd number of ancestors.
- (b) Show that you can partition B into three similar subsets: B_{∞} , B_e and B_o .
- (c) Identify $f(A_{\infty}), f(A_e)$.
- (d) Define

$$F(a) = \begin{cases} f(a) & \text{if } a \in A_{\infty} \cup A_e \\ g^{-1}(a) & \text{if } a \in A_o \end{cases}$$

and show that F is a 1-1 correspondence between A and B.