HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 9: DUE THURSDAY 19 APRIL, AT 11:00 IN
2-108.

(1) (10 points) Show that if f : [a,b] — R¥ is (n+ 1) times differentiable, and
x,y € [a,b], then

, @
Fly)=fl2) + f@)y —2) + -+ ==y —2)" + E(y)
where
|E(y)| < sup| |f(n+1)|w
ot (n+1)!

Hint: try taking the dot product of E(t) with E(y) to get an R valued
function.

Define

g(t) :== E(t) - E(y)
g :la,b] — Ris (n+ 1) times differentiable and the first n derivatives at
z are equal to 0. We can therefore apply the one dimensional version of
Taylor’s theorem to tell us that there exists some point s between x and y
so that
9"t (s)

(n+1)!

n+1

9(y) = (y —x)

This tells us that

B¢ (s) - E(y) w1 _ FD(s) - B(y)

E . E — _ _ n+1
() - E(y) 1) (y—=) 1) (y — )
Applying the Cauchy Schwartz inequality to this then gives

[f ()] 1
E < _ n+
B < Vo By
SO o
< (n+1) ‘y 'T|
)] < supy £+

(2) (10 points) Show that if f : [a,b] — R is differentiable and there exists
some c so that
[/ (@)] < el f(2)]
then if f(a) =0, f(x) must be 0 for all = € [a, b].

Hint: don’t try to integrate this as f’ is not necessarily Riemann inte-
grable...Try to think what the mean value Theorem can tell us about the
relationship between the supremum of f and f’ on some small neighborhood
of a.
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Consider f on a small interval [a,a + €] containing a. The mean value
Theorem tells us that since f(a) =0,

sup [f| <e sup [f’]

[, [,
We also have that |f’| < ¢|f|. Choosing € > 0 small enough that ec < 1

and combining this with our above inequality, we have

sup [f[ <ce sup [f]
la,a+¢€] [a,a+€]

so f is identically 0 on the interval [a,a + €]. We can then repeat this
argument for the interval [a + €, a + 2¢€] to get that f is identically O there.
Continuing this process, we get that f is identically 0 on [a, b].

(3) (a) (10 points) Suppose that f and g are real differentiable functions on
an interval [a, b] that satisfy the differential equation

f1t)=H(t, f(t))

g'(t) = H(t,g(t))
Where H : [a,b] x R — R satisfies the following condition. There
exists some constant ¢ € R so that

|H(t,s1) — H(t, s2)| < c|s1 — 2
Show that if f(a) = g(a) then f and g are equal everywhere.
Hint: apply the previous problem to f — g.
Consider the function h = f — g. We have that h is differentiable on
[a,b], h(a) =0, and
[W(#)] = [H(t, f(t) — H(t,g(t)| < clf(t) = g(t)| = clh(?)]

Therefore, our previous problem tells us that h is identically 0 on [a, b],
which is what we wanted.

(b) (5 points) Show that if H(t,s) = |s|2 that this is not true.
The functions f(t) = 0 and g(t) = §t* are two non equal functions
that satisfy this differential equation on the interval [0, 1], and f(0) =
9(0) = 0.

(4) Denote the space of all continuous real valued functions on [a, b] by C([a, b]).
(a) (10 points) Suppose that « is a strictly increasing function on [a, b].
(In other words a(xz) > a(y) if © > y.) Define the following inner

product for f,g € C([a,b]):

b
(f9) = [ foda
Define the norm of f € C(]a,b]) to be
Ifll2 = (£, £))?
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Prove the following inequality (called the Cauchy-Schwartz inequality):
(£r9) < I fll=llgll2

We shall use the following properties of (f,g) which follow directly
from the properties of the Riemann-Stiltjes integral:

(i)
(f,9) =g, 1)
(i)
(cf,9) = (f.cg) =c(f,9)
(iii)
(f+h,g9)=(f9) +(hg)
(iv)

0<(f.f)
Now using the above proberties we have
0.< (Af = Xag, Af = hag) = AK(F, f) + A3(g, 9) — 2Mih2(f. 9)
Setting A1 = (g, g) and A2 = (f, g), we get
0< (g, 9)*(f, )+ (f,9)(9,9) — 2(f,9)* (9, 9)
so if (g,g) # 0

(f,9)* <(f. )g.9)

This then gives our inequality in the case that (g,g) # 0. It follows
similarly if (f, f) # 0, and the above equation with A; = £1 gives the
last case that if (f, f) = (g,g) =0, then (f,g) = 0.

(b) (10 points) Show that the following defines a metric on C([a, b]):

d(f,9) == If = gll2

First, it is clear that d(f,g) = d(g, f). We shall now prove that the
triangle inequality holds using the Cauchy Schwartz inequality:

I1f +gll3 = (£, £) + (g, 9) + 2. 9) < IF15 + Nlgll3 + 1 £ 112 lgll2
SO

1f + gll2 < [ fll2 + llgll2
This then implies the triangle inequality:
d(f,h) = If = hll2

=If—g+g—nhl2

<|If = gll2+lg — Rll2

=d(f,9) +d(g; h)
It remains to show that if f # g, then d(f,g) > 0. This is the only
part for which we need that f and ¢ are continuous and « is strictly
increasing.
Suppose that f # g. Then f— g is continuous because f and g are, and

there exists some point z and ¢ > 0 so that f(z)—g(x) > c¢. Then, there
exists some § > 0 so that for |y—xz| < 9, |f(y)—g(y)—(f(z)—g(z))| < §.
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The triangle inequality then tells us that |[f(y) — g(y)| > §. There
therefore exists some x; < x2 so that on the interval [x1, 23], f—g > 5-

Therefore as (f — g)? > 0, for any partition P, the upper sum

c\ 2
U(P,(f = 9)% ) = (5) (alaz) - alar))

The right hand side of this is independent of P and strictly positive
because « is strictly increasing. Therefore the integral of (f — g)? is
strictly positive, and d(f,g) > 0 as required.

(¢) (5 points) Give an example showing that this is not a metric on R(«).

Consider a = = and the function f which is zero everywhere on [—1, 1]
apart from 0 where it equals 1. We shall show d(f,0) = 0. For this,
we need that the integral of f2 is 0. Note that as f? is bounded and
continuous outside of a finite set, and z is continuous, so f2 € R. Note
also that for any partition, the lower sum is equal to 0, so the integral
of f? is 0 as required.

(5) (10 points) Recall that any rational in Q has a unique reduced form £ where
p and ¢ are integers with no common factors and ¢ > 0. Define the function
f by f(z) = % if x = § and f(z) =0 for ¢ Q. Prove directly that f is
Riemann integrable on [0, 1] and find

-/Olfdm

Note first that any interval of nonzero size contains irrational numbers,
so the lower sums for this integral are always 0. To prove that f € R, we
must construct for any € > 0 a partition so that U(P, f) < e. (Of course,
this also shows that our integral is 0).

We do this as follows: for any € > 0 the number of points where f > 5
is some finite number N. Choose a partition P of [0, 1] so that each of
these points is in the interior of an interval of size at most 55. Then, as
f is bounded by 1, the contribution to U(P, f) from these intervals is at
most 5, and the contribution of the other intervals is at most § because f
is bounded by £ there and the total size of these intervals is at most 1. We
therefore have U(P, f) < € as required.



