HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007 ASSIGNMENT 9: DUE THURSDAY 19 APRIL, AT 11:00 IN 2-108.

(1) (10 points) Show that if $f : [a, b] \longrightarrow \mathbb{R}^k$ is (n+1) times differentiable, and $x, y \in [a, b]$, then

$$f(y) = f(x) + f'(x)(y - x) + \dots + \frac{f^{(n)}(x)}{n!}(y - x)^n + E(y)$$

where

$$|E(y)| \le \sup_{[a,b]} |f^{(n+1)}| \frac{|y-x|^{n+1}}{(n+1)!}$$

Hint: try taking the dot product of E(t) with E(y) to get an \mathbb{R} valued function.

Define

$$g(t) := E(t) \cdot E(y)$$

 $g:[a,b] \longrightarrow \mathbb{R}$ is (n+1) times differentiable and the first n derivatives at x are equal to 0. We can therefore apply the one dimensional version of Taylor's theorem to tell us that there exists some point s between x and y so that

$$g(y) = \frac{g^{(n+1)}(s)}{(n+1)!}(y-x)^{n+1}$$

This tells us that

$$E(y) \cdot E(y) = \frac{E^{(n+1)}(s) \cdot E(y)}{(n+1)!} (y-x)^{n+1} = \frac{f^{(n+1)}(s) \cdot E(y)}{(n+1)!} (y-x)^{n+1}$$

Applying the Cauchy Schwartz inequality to this then gives

$$|E(y)|^{2} \leq \frac{|f^{(n+1)}(s)|}{(n+1)!} |E(y)| |y-x|^{n+1}$$

 \mathbf{SO}

$$|E(y)| \le \sup_{[a,b]} |f^{(n+1)}| \frac{|y-x|^{n+1}}{(n+1)!}$$

(2) (10 points) Show that if $f : [a, b] \longrightarrow \mathbb{R}$ is differentiable and there exists some c so that

$$|f'(x)| \le c|f(x)|$$

then if f(a) = 0, f(x) must be 0 for all $x \in [a, b]$.

Hint: don't try to integrate this as f' is not necessarily Riemann integrable...Try to think what the mean value Theorem can tell us about the relationship between the supremum of f and f' on some small neighborhood of a. Consider f on a small interval $[a, a + \epsilon]$ containing a. The mean value Theorem tells us that since f(a) = 0,

$$\sup_{[a,a+\epsilon]} |f| \le \epsilon \sup_{[a,a+\epsilon]} |f'|$$

We also have that $|f'| \leq c|f|$. Choosing $\epsilon > 0$ small enough that $\epsilon c < 1$ and combining this with our above inequality, we have

$$\sup_{[a,a+\epsilon]} |f| \le c\epsilon \sup_{[a,a+\epsilon]} |f|$$

so f is identically 0 on the interval $[a, a + \epsilon]$. We can then repeat this argument for the interval $[a + \epsilon, a + 2\epsilon]$ to get that f is identically 0 there. Continuing this process, we get that f is identically 0 on [a, b].

(3) (a) (10 points) Suppose that f and g are real differentiable functions on an interval [a, b] that satisfy the differential equation

$$f'(t) = H(t, f(t))$$
$$g'(t) = H(t, g(t))$$

Where $H : [a, b] \times R \longrightarrow \mathbb{R}$ satisfies the following condition. There exists some constant $c \in \mathbb{R}$ so that

 $|H(t,s_1) - H(t,s_2)| \le c|s_1 - s_2|$

Show that if f(a) = g(a) then f and g are equal everywhere.

Hint: apply the previous problem to f - g.

Consider the function h = f - g. We have that h is differentiable on [a, b], h(a) = 0, and

$$|h'(t)| = |H(t, f(t)) - H(t, g(t))| \le c|f(t) - g(t)| = c|h(t)|$$

Therefore, our previous problem tells us that h is identically 0 on [a, b], which is what we wanted.

(b) (5 points) Show that if $H(t,s) = |s|^{\frac{1}{2}}$ that this is not true.

The functions f(t) = 0 and $g(t) = \frac{1}{4}t^2$ are two non equal functions that satisfy this differential equation on the interval [0, 1], and f(0) = g(0) = 0.

- (4) Denote the space of all continuous real valued functions on [a, b] by C([a, b]).
 - (a) (10 points) Suppose that α is a strictly increasing function on [a, b]. (In other words $\alpha(x) > \alpha(y)$ if x > y.) Define the following inner product for $f, g \in C([a, b])$:

$$\langle f,g\rangle := \int_a^b fgd\alpha$$

Define the norm of $f \in C([a, b])$ to be

$$||f||_2 := (\langle f, f \rangle)^{\frac{1}{2}}$$

Prove the following inequality (called the Cauchy-Schwartz inequality):

 $\langle f, g \rangle \le \|f\|_2 \|g\|_2$

We shall use the following properties of $\langle f, g \rangle$ which follow directly from the properties of the Riemann-Stiltjes integral:

- (i) $\langle f,g\rangle = \langle g,f\rangle$
- (ii)

(iii)

(iv)

$$\langle cf,g\rangle = \langle f,cg\rangle = c\langle f,g\rangle$$

$$\langle f+h,g
angle = \langle f,g
angle + \langle h,g
angle$$

Now using the above proberties we have

$$0 \le \langle \lambda_1 f - \lambda_2 g, \lambda_1 f - \lambda_2 g \rangle = \lambda_1^2 \langle f, f \rangle + \lambda_2^2 \langle g, g \rangle - 2\lambda_1 \lambda_2 \langle f, g \rangle$$

 $0 \le \langle f, f \rangle$

Setting $\lambda_1 = \langle g, g \rangle$ and $\lambda_2 = \langle f, g \rangle$, we get

$$0 \le \langle g, g \rangle^2 \langle f, f \rangle + \langle f, g \rangle^2 \langle g, g \rangle - 2 \langle f, g \rangle^2 \langle g, g \rangle$$

so if $\langle g,g\rangle \neq 0$

$$\langle f,g\rangle^2 \le \langle f,f\rangle\langle g,g\rangle$$

This then gives our inequality in the case that $\langle g, g \rangle \neq 0$. It follows similarly if $\langle f, f \rangle \neq 0$, and the above equation with $\lambda_i = \pm 1$ gives the last case that if $\langle f, f \rangle = \langle g, g \rangle = 0$, then $\langle f, g \rangle = 0$.

(b) (10 points) Show that the following defines a metric on C([a, b]):

$$d(f,g) := \|f - g\|_2$$

First, it is clear that d(f,g) = d(g,f). We shall now prove that the triangle inequality holds using the Cauchy Schwartz inequality:

$$||f + g||_2^2 = \langle f, f \rangle + \langle g, g \rangle + 2\langle f, g \rangle \le ||f||_2^2 + ||g||_2^2 + ||f||_2 ||g||_2$$

 \mathbf{SO}

$$||f + g||_2 \le ||f||_2 + ||g||_2$$

This then implies the triangle inequality:

$$d(f,h) = ||f - h||_2$$

= ||f - g + g - h||_2
$$\leq ||f - g||_2 + ||g - h||_2$$

= d(f,g) + d(g,h)

It remains to show that if $f \neq g$, then d(f,g) > 0. This is the only part for which we need that f and g are continuous and α is strictly increasing.

Suppose that $f \neq g$. Then f-g is continuous because f and g are, and there exists some point x and c > 0 so that $f(x)-g(x) \geq c$. Then, there exists some $\delta > 0$ so that for $|y-x| < \delta$, $|f(y)-g(y)-(f(x)-g(x))| < \frac{c}{2}$.

The triangle inequality then tells us that $|f(y) - g(y)| \ge \frac{c}{2}$. There therefore exists some $x_1 < x_2$ so that on the interval $[x_1, x_2]$, $f - g \ge \frac{c}{2}$. Therefore as $(f - g)^2 \ge 0$, for any partition P, the upper sum

$$U(P, (f-g)^2, \alpha) \ge \left(\frac{c}{2}\right)^2 \left(\alpha(x_2) - \alpha(x_1)\right)$$

The right hand side of this is independent of P and strictly positive because α is strictly increasing. Therefore the integral of $(f - g)^2$ is strictly positive, and d(f,g) > 0 as required.

(c) (5 points) Give an example showing that this is not a metric on $\mathcal{R}(\alpha)$.

Consider $\alpha = x$ and the function f which is zero everywhere on [-1, 1] apart from 0 where it equals 1. We shall show d(f, 0) = 0. For this, we need that the integral of f^2 is 0. Note that as f^2 is bounded and continuous outside of a finite set, and x is continuous, so $f^2 \in \mathcal{R}$. Note also that for any partition, the lower sum is equal to 0, so the integral of f^2 is 0 as required.

(5) (10 points) Recall that any rational in \mathbb{Q} has a unique reduced form $\frac{p}{q}$ where p and q are integers with no common factors and q > 0. Define the function f by $f(x) = \frac{1}{q}$ if $x = \frac{p}{q}$ and f(x) = 0 for $x \notin \mathbb{Q}$. Prove directly that f is Riemann integrable on [0, 1] and find

$$\int_0^1 f dx$$

Note first that any interval of nonzero size contains irrational numbers, so the lower sums for this integral are always 0. To prove that $f \in \mathcal{R}$, we must construct for any $\epsilon > 0$ a partition so that $U(P, f) < \epsilon$. (Of course, this also shows that our integral is 0).

We do this as follows: for any $\epsilon > 0$ the number of points where $f \geq \frac{\epsilon}{2}$ is some finite number N. Choose a partition P of [0,1] so that each of these points is in the interior of an interval of size at most $\frac{\epsilon}{2N}$. Then, as f is bounded by 1, the contribution to U(P, f) from these intervals is at most $\frac{\epsilon}{2}$, and the contribution of the other intervals is at most $\frac{\epsilon}{2}$ because f is bounded by $\frac{\epsilon}{2}$ there and the total size of these intervals is at most 1. We therefore have $U(P, f) < \epsilon$ as required.