
HOMEWORK FOR 18.100B AND 18.100C, SPRING 2007
ASSIGNMENT 10. Solutions.

1. Assume f is a real, differentiable function with continuous derivative

on [a, b], f(a) = f(b) = 0, and
∫ b

a
f2(x) dx = 1. Prove that

(1)
∫ b

a
xf(x)f ′(x) dx = − 1

2
, and

(2)
∫ b

a
[f ′(x)]2 dx ·

∫ b

a
x2f2(x) dx > 1

4
.

Solution. (a) It follows from integration by parts:
∫ b

a
xf(x)f ′(x) dx =

1

2
xf2(x)|ba − 1

2

∫ b

a
f2(x) dx.

(b) Apply the Schwarz inequality and part (a).

2. Consider the series

f(x) =
∞
∑

n=1

1

1 + n2x
, x > 0.

(1) On what intervals does the series converges uniformly? On what
intervals does it fail to converge uniformly?

(2) Is f continuous wherever the series converges?

Solution. (a) If x > 0,
∑∞

n=1
1

1+n2x
= 1

x

∑∞
n=1

1

n2+
1

x

. Since 1

n2+
1

x

< 1

n2 ,

and
∑∞

n=1
1

n2 converges, the series
∑∞

n=1
1

1+n2x
converges (in fact absolutely,

as it has positive terms anyway).
If x ≥ a > 0, then 1

1+n2x
≤ 1

1+n2a
. Since

∑

1

1+n2a
converges, by Weier-

strass’ M-test,
∑

1

1+n2x
converges unformly on every interval [a, b] ⊂ (0,∞).

On intervals of the form (0, b] the series does not converge uniformly.
Assume by way of contradiction that it does. Then Cauchy’s test implies
that there exists N > 0 such that

∑m
n=N

1

1+n2x
< 1

2
, for all x ∈ (0, b]. But if

we set x = 1

N2 we get a contradiction.
(b) Since all the terms of the series are continuous functions whenever they

are defined, f(x) is continuous on all intervals where it converges uniformly.
Every point of convergence (see (a)) can be put in an interval [a, b] where
the series converges uniformly. Therefore, f is continuous for all values of x
for which is converges.

3. Define fn(x) = x
1+nx2 , for n ≥ 1. Prove that:

(1) {fn} converges uniformly on R to some function f , and
(2) {f ′

n(x)} converges pointwise to {f ′(x)} for all x 6= 0, but not for
x = 0.

Solution. (a) Of course, as the denominator of fn is strictly positive, fn

are defined everywhere, and are continuously differentiable.It is clear that
{fn(x)} converges pointwise to f(x) = 0 for every x. To check uniform

1



2

convergence, let ε > 0 be given. Note that

f ′
n(x) =

(1 + nx2) − 2nx2

(1 + nx2)2
=

1 − nx2

(1 + nx2)2

In particular, fn(x) has a local maximum at x = 1/
√

n and a local minimum
at x = −1/

√
n, and it’s clear that these are actually a global maximum and

minimum. So for any x,

|fn(x)| ≤ max{|fn(1/
√

n)|, |fn(−1/
√

n)|}

≤ 1

2
√

n

So for any ε > 0, if N > 1/4ε2, we will have |fn(x) − f(x)| < ε for every
x ∈ R and n > N . So, the {fn} converge uniformly to the function f(x) = 0
as claimed.

(b) Then, for any x 6= 0,

lim
n→∞

f ′
n(x) = 0

as the n2 in the denominator will dominate all the other terms. Thus
f ′(x) = 0 = limn→∞ f ′

n(x). However, at 0, we find f ′
n(0) = 1 for any n,

so limn→∞ f ′
n(x) = 1, which is different from f ′(0) = 0.

In particular, this shows the necessity of the ”uniform convergence of f ′
n”

condition in Rudin Theorem 7.17.

4. Recall the step function

I(x) =

{

0, x ≤ 0
1, x > 0

.

Let {xn} be a sequence of distinct points in the interval (a, b), and
∑

cn and
absolutely convergent series. Prove that the series of functions

f(x) =

∞
∑

n=1

cnI(x − xn), x ∈ [a, b]

converges uniformly.
In addition, show that f is continuous at every x 6= xn.

Solution. Since I(x− xn) ∈ {0, 1}, for all x, and
∑ |cn| converges, by the

Weierstrass M-test, the series
∑∞

n=1
cnI(x − xn) converges uniformly and

absolutely. If x /∈ {x1, x2, . . . }, then I is continuous at x − xn for every n.
Therefore this is a uniformly convergent series of continuous functions at x,
and so it is continuous.

Assume x = xm for some m. There exists an open interval V around
xm, such that there no xi, i 6= m, are in this interval. Let s, t be arbitrary
points in V with t < xm < s. Since the series is absolutely convergent,
f(s) − f(t) =

∑

cn[I(s − xn) − I(t − xn)]. Clearly s and t are in the same
side of xn, for every n 6= m, which means that I(s−xn)− I(t−xn) = 0, for



3

n 6= m. Then f(s) − f(t) = cm[I(s − xm) − I(t − xm)] = cm, which means
that f is not continuous at xm.

5. Put P0 = 0, and define, for n ≥ 0,

Pn+1(x) = Pn(x) +
x2 − P 2

n(x)

2
.

Prove that the sequence of polynomials {Pn(x)}n converges uniformly to |x|
on the interval [−1, 1]. (Hint: see ex. 23/p. 169.)

Solution. From the recursion formula for Pn, it follows immediately that

(1) |x| − Pn+1(x) = (|x| − Pn(x))

(

1 − |x| + Pn(x)

2

)

.

P0 = 0. Assume by induction that 0 ≤ Pn(x) ≤ |x|, for all x ∈ [−1, 1]. In
(1), the right hand side is nonnegative then, and so Pn+1(x) ≤ |x|. From the
recursion formula, we also have Pn+1 ≥ 0.

Again from the recursion formula, Pn+1(x)−Pn(x) = 1

2
(x2 −P 2

n(x)) ≥ 0.
So we have proved by induction that 0 ≤ Pn(x) ≤ Pn+1(x) ≤ |x|, for all

n and all x ∈ [−1, 1].

By induction, assume 0 ≤ |x| − Pn(x) ≤ |x|
(

1 − |x|
2

)n

. (Note that

this is clearly true for n = 0.) Then from formula (1), using Pn(x) ≥ 0

and the induction hypothesis, |x| − Pn+1(x) ≤ (|x| − Pn(x))
(

1 − |x|
2

)

≤

|x|
(

1 − |x|
2

)n+1

.

Therefore, we have proved 0 ≤ |x| −Pn(x) ≤ |x|
(

1 − |x|
2

)n

. Consider the

function g(y) = y(1 − y
2
)n, for 0 ≤ y ≤ 1. By computing the derivative (and

checking endpoints), we find that the maximum of this function is achieved
at y = 2

n+1
. So g(y) ≤ 2

n+1
(1 − 1

n+1
)n ≤ 2

n+1
. Set y = |x|, and we find that

0 ≤ |x| − Pn(x) ≤ 2

n + 1
.

Fix ε > 0, and let N > 0 be greater than 2

ε
− 1. Then for all n ≥ N,

and all x ∈ [−1, 1], 0 ≤ |x| −Pn(x) < ε. This proves that {Pn(x)} converges
uniformly on [−1, 1] to |x|.


