In a well-mixed room, small, pathogen-bearing droplets may be suspended by the ambient circulation. Their concentration C determines the infectivity of the air, and so the rate of transmission from infected to susceptible individuals. For the sake of simplicity, consider drops of uniform size suspended in a well-mixed room of volume $V = AH$, height H and area A. The droplet-borne pathogen concentration $C(t)$ evolves with time t according to

$$V \frac{dC}{dt} = p_m IP - (Q + p_f Q_r + v_s A + \lambda_v V)C$$

where I is the number of infected individuals in the room, P is the pathogen production rate per infected individual, $p_m < 1$ is the probability of pathogen filtration by the mask of an infected individual, Q is the rate of exchange between the the contaminated indoor air and the fresh air outside, Q_r is the air recirculation rate, $p_f < 1$ is the probability of filtration by this air recirculation, v_s is the droplet settling speed, and λ_v is the natural rate of pathogen deactivation.

a) If a single infected individual ($I = 1$) enters the room where there are N uninfected people at time $t = 0$, deduce the pathogen concentration $C(t)$. Deduce both the final equilibrium concentration C_{eq} arising in the long-time limit, and the characteristic time of relaxation to this equilibrium value.

b) Transmission arises when an individual has inhaled a sufficient amount of airborne pathogen. The transmission rate to a single individual may be expressed as $\beta(t) = p_m s Q_b C(t)$, where $s < 1$ is the susceptibility of that individual, and Q_b is the breathing rate. Calculate the indoor reproductive number, $R_{in}(\tau)$ of the virus, specifically, the mean number of transmissions after a time τ:

$$R_{in}(\tau) = N \int_0^\tau \beta(t) dt$$

c) Comment on the utility of masks in reducing airborne transmission. Specifically, why are they such an effective means of reducing transmission?

Additional reading

