1. Find the continued fraction for

$$
\alpha=\frac{\sqrt{10}-2}{3}
$$

2. Find a fraction $\frac{r}{s}$ that is a good approximation for $\alpha=\frac{\sqrt{10}-2}{3}$ with s at most 50 . The difference between $\frac{r}{s}$ and α should be at most 0.0005 .
3. Show that any continued fraction of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots \cdot \frac{1}{a_{k}+x}}}}}
$$

reduces to an expression of the form

$$
\frac{r x+s}{t x+u}
$$

4. In class (and the lecture notes) we showed that any continued fraction for a quantity of the form

$$
\frac{\sqrt{d}-p}{q}
$$

with $p, q, d>0$, was eventually periodic. Show this is also true for the continued fractions for quantities of the form

$$
\frac{p-\sqrt{d}}{q} \text { and } \frac{p+\sqrt{d}}{q}
$$

You may assume that we only consider continued fractions for positive numbers, and that p, d, q are positive.
Hint: Show that when you are computing the continued fraction, the quantity $\left|\frac{p}{\sqrt{d}}\right|$ decreases with each step until you reach a fraction of the form $\frac{\sqrt{d}-p}{q}$.

