Mathematics of Big Data \& Machine Learning

Hayden Jananthan \& Jeremy Kepner

18.095, January 10, 2024

1. Recall that a ring $\mathrm{R}=(R,+, \cdot,-, 0,1)$ consists of a set R equipped with two binary operations + and \cdot, a unary operation -, and two constant 0 and 1 satisfying the equational laws:

$$
\begin{aligned}
x+(y+z) & =(x+y)+z, & x \cdot(y \cdot z) & =(x \cdot y) \cdot z, \\
x+y & =y+x, & x \cdot 1 & =1 \cdot x=x, \\
x+0 & =0+x=0, & x \cdot(y+z) & =(x \cdot y)+(x \cdot z), \\
x+(-x) & =(-x)+x=0, & (y+z) \cdot x & =(y \cdot x)+(z \cdot x) .
\end{aligned}
$$

Show that in any ring $\mathrm{R}=(R,+, \cdot,-, 0,1), 0$ is a multiplicative annihilator, i.e., $0 \cdot x=$ $x \cdot 0=0$ for all $x \in R$.
2. Consider a feed-forward neural network with n input neurons and m output neurons and no hidden layers. The inference step/forward propagation for this network can be written as

$$
I(\mathbf{x})=h(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

where $\mathbf{W}=\left(w_{i, j}\right)_{i, j}$ is the $m \times n$ weight matrix, $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in \mathbb{R}^{m}$ is the bias vector, $\mathbf{x} \in \mathbb{R}^{n}$ is our input vector, and $h: \mathbb{R} \rightarrow \mathbb{R}$ is our activation function (applied elementwise when applied to a vector). You may assume that h is differentiable.
Let X denote the set of training examples and let $y(\mathbf{x})$ be the ground-truth output associated with $\mathbf{x} \in X$. The cost function associated with this network is given by

$$
C=\frac{1}{2 n} \sum_{\mathbf{x} \in X}\|I(\mathbf{x})-y(\mathbf{x})\|^{2}
$$

where n is the size of X. Find $\frac{\partial C}{\partial w_{i, j}}$ and $\frac{\partial C}{\partial b_{i}}$ for each $1 \leq i \leq m$ and $1 \leq j \leq n$.
3. Define

$$
\mathbf{A}:=\begin{gathered}
\\
a \\
b \\
c
\end{gathered}\left[\begin{array}{ccc}
a & b & d \\
3 & 2 & -1 \\
-1 & 1 & \\
& 2 & -1
\end{array}\right] \quad \begin{array}{r}
\mathbf{B}:=\begin{array}{c}
a \\
c
\end{array}\left[\begin{array}{ccc}
a & b & e \\
d & 1 & 2 \\
3 & -3 & \\
1 & 3 & -1
\end{array}\right]
\end{array}
$$

Calculate $\mathbf{A} \oplus \mathbf{B}, \mathbf{A} \otimes \mathbf{B}$, and $\mathbf{A} \oplus . \otimes \mathbf{B}$ when \oplus and \otimes are given by:
(a) $\oplus=+, \otimes=$.
(b) $\oplus=\min , \otimes=\max$
(c) $\oplus=\max , \otimes=+$
(Note: Be sure to interpret empty entries based on the choice of \oplus.)

