1. Recall that a ring $R = (R, +, \cdot, -, 0, 1)$ consists of a set R equipped with two binary operations $+$ and \cdot, a unary operation $-$, and two constant 0 and 1 satisfying the equational laws:

\[
\begin{align*}
 x + (y + z) &= (x + y) + z, & x \cdot (y \cdot z) &= (x \cdot y) \cdot z, \\
 x + y &= y + x, & x \cdot 1 &= 1 \cdot x = x, \\
 x + 0 &= 0 + x = 0, & x \cdot (y + z) &= x \cdot y + (x \cdot z), \\
 x + (-x) &= (-x) + x = 0, & (y + z) \cdot x &= (y \cdot x) + (z \cdot x).
\end{align*}
\]

Show that in any ring $R = (R, +, \cdot, -, 0, 1)$, 0 is a multiplicative annihilator, i.e., $0 \cdot x = x \cdot 0 = x$ for all $x \in R$.

2. Consider a feed-forward neural network with n input neurons and m output neurons and no hidden layers. The inference step/forward propagation for this network can be written as

\[I(x) = h(Wx + b) \]

where $W = (w_{i,j})_{i,j}$ is the $m \times n$ weight matrix, $b = (b_1, b_2, \ldots, b_m) \in \mathbb{R}^m$ is the bias vector, $x \in \mathbb{R}^n$ is our input vector, and $h : \mathbb{R} \to \mathbb{R}$ is our activation function (applied elementwise when applied to a vector). You may assume that h is differentiable.

Let X denote the set of training examples and let $y(x)$ be the ground-truth output associated with $x \in X$. The cost function associated with this network is given by

\[C = \frac{1}{2n} \sum_{x \in X} |I(x) - y(x)|^2, \]

where n is the size of X. Find $\frac{\partial C}{\partial w_{i,j}}$ and $\frac{\partial C}{\partial b_i}$ for each $1 \leq i \leq m$ and $1 \leq j \leq n$.

3. Define

\[A := \begin{bmatrix} a & b & c \\ 3 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 \end{bmatrix} \quad B := \begin{bmatrix} a & b & c \\ -1 & 1 & 2 \\ 3 & -3 & -1 \\ 1 & 3 & -1 \end{bmatrix} \]

Calculate $A \oplus B$, $A \odot B$, and $A \oplus \odot B$ when \oplus and \odot are given by:

(a) $\oplus = +$, $\odot = \cdot$.

(b) $\oplus = \text{min}$, $\odot = \text{max}$.

(c) $\oplus = \text{max}$, $\odot = +$.

(Note: Be sure to interpret empty entries based on the choice of \oplus.)

1