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Monoids

Notation: N = {n ∈ Z : n ≥ 1} and N0 := {0} ∪ N.

Definition: A pair (M, ∗), where M is a set and ∗ is a binary operation on M
(that is, a function ∗ : S × S → S where (x , y) 7→ x ∗ y), is called a monoid if

1 ∗ is associative: x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x , y , z ∈ M, and

2 M has an identity element: there is 1 ∈ M such that 1 ∗ x = x ∗ 1 = x for
all x ∈ M.

We often write just M, rather than (M, ∗).

A monoid M is a group if every x ∈ M is invertible (that is, there exists
y ∈ M such that x ∗ y = y ∗ x = 1).

Remark: We will assume that every monoid we mention here is

commutative: x ∗ y = y ∗ x for all x , y ∈ M, and

cancellative: x ∗ y = x ∗ z implies y = z for all x , y , z ∈ M.

Examples

1 N0, Q≥0, and {m/2n : m, n ∈ N0} are monoids with the standard addition.

2 N is a monoid under the standard multiplication.

3 Z, Q, R, and C are groups under the standard addition.

4 The set of continuous functions on [0, 1] is a monoid under addition.
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Atomic Monoids

Definition (atomic monoid)

Let (M, ∗) be a monoid.

A non-invertible a ∈ M is an atom if for all x , y ∈ M, the equality
a = x ∗ y implies that either x or y is invertible.

The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

We let A(M) denote the set of atoms of M.

Examples

1 (N0,+) is atomic and its only atom is 1.

2 For every d ∈ N, the monoid (Nd
0 ,+) is atomic.

3 For every r ∈ Q>0, the monoid ({0} ∪Q≥r ,+) is atomic with set of
atoms [r , 2r) ∩Q.

4 (N, ·) is atomic with set of atoms P, the set of prime numbers.

5 The additive monoid M = {m/2n : m, n ∈ N0} is not atomic:
x = x/2 + x/2 for all x ∈ M \ {0}.
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ACCP Monoids

Definition: Let (M, ∗) be a monoid.

For each x ∈ M, the set x ∗M := {x ∗ y : y ∈ M} is called a principal
ideal of M.

M satisfies the ascending chain condition on principal ideals (ACCP) if for
every sequence (xn ∗M)n∈N of principal ideals of M, there exists k ∈ N
such that xn ∗M = xk ∗M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic.

Felix Gotti fgotti@mit.edu Atomicity in Algebra and Combinatorics



ACCP Monoids

Definition: Let (M, ∗) be a monoid.

For each x ∈ M, the set x ∗M := {x ∗ y : y ∈ M} is called a principal
ideal of M.

M satisfies the ascending chain condition on principal ideals (ACCP) if for
every sequence (xn ∗M)n∈N of principal ideals of M, there exists k ∈ N
such that xn ∗M = xk ∗M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic.

Felix Gotti fgotti@mit.edu Atomicity in Algebra and Combinatorics



ACCP Monoids

Definition: Let (M, ∗) be a monoid.

For each x ∈ M, the set x ∗M := {x ∗ y : y ∈ M} is called a principal
ideal of M.

M satisfies the ascending chain condition on principal ideals (ACCP) if for
every sequence (xn ∗M)n∈N of principal ideals of M, there exists k ∈ N
such that xn ∗M = xk ∗M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic.

Felix Gotti fgotti@mit.edu Atomicity in Algebra and Combinatorics



ACCP Monoids

Definition: Let (M, ∗) be a monoid.

For each x ∈ M, the set x ∗M := {x ∗ y : y ∈ M} is called a principal
ideal of M.

M satisfies the ascending chain condition on principal ideals (ACCP) if for
every sequence (xn ∗M)n∈N of principal ideals of M, there exists k ∈ N
such that xn ∗M = xk ∗M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic.
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Factorizations in Monoids

Let (M, ∗) be an atomic monoid.

1 If x = a1 ∗ · · · ∗ a` for atoms a1, . . . , a` ∈ M, then the formal expression
a1 ∗ · · · ∗ a` is a factorization of x .

2 Two factorizations a1 ∗ · · · ∗ a` and b1 ∗ · · · ∗ bk are the same if k = ` and
there is a bijection ϕ : {1, . . . , k} → {1, . . . , k} such that aj and bϕ(j) are
associates (i.e., bϕ(j) = aju for some invertible element u ∈ M).

3 For each x ∈ M, we let Z(x) denote the set of factorizations of x .

4 The length of a factorization z is the number of atoms it involves and is
denoted by |z |, and for x ∈ M we set L(x) := {|z | : z ∈ Z(x)}.

Definition

Let M be an atomic monoid.

M is a unique factorization monoid (UFM) if |Z(x)| = 1 for all x ∈ M.

M is a half-factorial monoid (HFM) if |L(x)| = 1 for all x ∈ M.

M is a finite factorization monoid (FFM) if |Z(x)| <∞ for all x ∈ M.

M is a bounded factorization monoid (BFM) if |L(x)| <∞ for all x ∈ M.
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Factorizations in Monoids (continuation)

We have the following chain of implications.

UFM ⇒ [FFM, HFM] ⇒ BFM ⇒ atomic monoid

Examples
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Factorizations in Monoids (continuation)

We have the following chain of implications.

UFM ⇒ [FFM, HFM] ⇒ BFM ⇒ atomic monoid

Remark: None of the implications above is reversible.
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Atomicity in Commutative Rings
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Integral Domains: Definition and Examples

Definition: A triple (R,+, ·) is a commutative ring if (R,+) and (R \ {0}, ·)
are monoids and the following conditions hold:

the monoid (R,+) is a group: every element in (R,+) is invertible;

a(b + c) = ab + ac for all a, b, c ∈ R.

1a = a for all a ∈ R.

In addition, R is an integral domain if for all a, b ∈ R, the equality ab = 0
implies that either a = 0 or b = 0.

Notation

We will write R instead of the more cumbersome notation (R,+, ·).

For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid
of R, and we denote it by R∗.

Examples

Z, Q, and R are integral domains.

Z[i ] = {m + in : m, n ∈ Z} is an integral domain.

Z[
√
−5] = {m + n

√
−5 : m, n ∈ Z} is an integral domain.
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Integral Domains (continuation)

A Non-Example: The set C(R) consisting of all continuous functions on R is a
commutative ring that is not an integral domain.
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Atomic Domains

Definition

An integral domain is called atomic or an atomic domain if R∗ is an atomic
monoid.

Examples of atomic domains

Z is an atomic domain

Z[i ] and Z[
√
−5] are atomic domains

R[x ] is an atomic domain

Noetherian domains and, in particular, the ring of integers of every
number field are atomic domains

Examples of a non-atomic domain: Let Z̄C denote the set of all complex
numbers α such that there exists a monic p(x) ∈ Z[x ] with p(α) = 0. The set
Z̄C is an integral domain that is not atomic.
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R∗ is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs

Z is a UFD (this is the Fundamental Theorem of Arithmetic).

Z[i ] is a UFD.

Z[x ] is a UFD.

Examples of integral domains that are not UFDs

Z̄C is not atomic, and so it is not a UFD.

Z[
√
−5] is an atomic domain that is not a UFD: for instance,

6 = 2 · 3 = (1−
√
−5)(1 +

√
−5)
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Atomic Integral Domains

Definition. Let R be an integral domain. Then

R is a finite factorization domain (FFD) if R∗ is an FFM,

R is a half-factorial domain (HFD) if R∗ is an HFM, and

R is a bounded factorization domain (BFD) if R∗ is a BFM.

As for monoids, we have the following chain of implications.

UFD ⇒ [FFD, HFD] ⇒ BFD ⇒ atomic domain

Examples

1 Z[
√
−5] is both an FFD and an HFD but it is not a UFD (Exercise).

2 The subring Z[x2, x3] of Z[x ] is a BFD that is not an HFD (Exercise).

3 The subring R + C[x ] of C[x ] is a BFD that is not an FFD (Exercise).
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A Non-BFD Atomic Domain

Example

1 Let P be the set of primes, and consider the submonoid M of (Q≥0,+)
generated by {1/p : p ∈ P}.

2 The monoid M satisfies the ACCP and A(M) = {1/p : p ∈ P} (Exercise).

3 Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.

4 R can be checked to be an integral domain.

5 Since M satisfies the ACCP, one can easily check that R also satisfies the
ACCP.

6 Therefore R is an atomic domain.

7 Since x =
(
x

1
p
)p

for every p ∈ P, the integral domain R is not a BFD.

Remark: There are atomic domains that do not satisfy the ACCP. The first
one was constructed by A. Grams in 1974.
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Atomicity in Lattices
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P,≤) consisting of a
set P and a binary relation ≤ satisfying the following properties.

1 Reflexivity: x ≤ x (for all x ∈ P).

2 Antisymmetry: If x ≤ y and y ≤ x , then x = y (for all x , y ∈ P).

3 Transitivity: If x ≤ y and y ≤ z , then x ≤ z (for all x , y , z ∈ P).

We write P instead of (P,≤). Let P be a poset.

P has a 0̂ if there exists 0̂ ∈ P such that 0̂ ≤ x for all x ∈ P.

We write x l y when x < y and x ≤ z ≤ y for some z implies that z = x
or z = y , in which case we say that y covers x .

P is graded if there is a rank function ρ : P → N0 such that for all
x , y ∈ P

(a) x < y implies that ρ(x) < ρ(y),

(b) x l y implies that ρ(x) + 1 = ρ(y).
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Examples of Posets

1 A totally ordered set is a poset where any two elements are comparable.
For instance, N or [n] := {1, 2, . . . , n} for every n ∈ N.

2 The power sets 2N := {S : S ⊆ N} and 2[n] := {S : S ⊆ [n]} are posets
under inclusion.

3 For each n ∈ N, the set Dn of all divisors of n is a poset if a ≤ b means
that a divides b as integers.

4 A finite poset P can be represented by its Hasse diagram: a graph whose
vertices are the elements of P and whose edges are the covered relations
such that if s < t, then s is drawn below t with respect to the y -axis.
Below are the Hasse diagrams of 2[3]:
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Lattice: Definition and Examples

Definition: Let P be a poset.

If S := {s1, . . . , sn} ⊆ P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by ∨S := s1 ∨ · · · ∨ sn (resp.,
∧S := s1 ∧ · · · ∧ sn) and call it the join (resp., meet) of s1, . . . , sn.

The poset P is called a lattice if every finite subset of P has both a join
and a meet.

Examples

1 [n] and N are lattices, where a ∨ b = max{a, b} and a ∧ b = min{a, b}.
2 2[n] and 2N are lattices, where A ∨ B = A ∪ B and A ∧ B = A ∩ B.

3 Dn is a lattice, where a ∨ b = lcm(a, b) and a ∧ b = gcd(a, b).

4 The poset with Hasse diagram is not a lattice.

5 Below are the Hasse diagrams of the lattices with five elements.
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Atomic Lattices

Definition

Let L be a lattice with 0̂.

An element r ∈ L is an atom if it covers 0̂.

If every element of L is the join of atoms, then L is atomic.

Example of Atomic Lattices

1 The lattice with Hasse diagram is atomic while the lattice with Hasse

diagram is not.

2 2[n] and 2N are lattices, where A ∨ B = A ∪ B and A ∧ B = A ∩ B.
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Factorizations in Lattices

Let L be an atomic lattice.

1 If x = a1 ∨ · · · ∨ a` for atoms a1, . . . , a` ∈ L, then the formal expression
a1 ∨ · · · ∨ a` is a factorization of x if it is irredundant, that is, ∨A < x for
each A ( {a1, . . . , a`}. For x ∈ L, we let Z(x) denote the set of
factorizations of x .

2 The length of a factorization z is the number of atoms it involves and is
denoted by |z |, and for x ∈ L we set L(x) := {|z | : z ∈ Z(x)}.

Definition

Let L be an atomic lattice.

is a unique factorization lattice (UFL) if |Z(x)| = 1 for all x ∈ L.

is a half-factorial lattice (HFL) if |L(x)| = 1 for all x ∈ L.

is a finite factorization lattice (FFL) if |Z(x)| <∞ for all x ∈ L.

is a bounded factorization lattice (BFL) if |L(x)| <∞ for all x ∈ L.
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Factorizations in Lattices (continuation)

As in the case of monoids and rings, we have the following chain of
implications.

UFL ⇒ [FFL, HFL] ⇒ BFL ⇒ atomic lattice

Examples
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Finite Geometric Lattice

Definition: A finite lattice L is called a geometric lattice if it satisfies the
following two conditions.

L is atomic.

For all x , y ∈ L such that both x and y cover x ∧ y , the join x ∨ y covers
both x and y .

Remark: Geometric lattices are in natural bijection with matroids, which are
objects well studied in combinatorics.

Theorem

Every geometric lattice is an HFL.
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