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Atomicity in Commutative Monoids




Notation: N={n€Z:n>1} and No := {0} UN.
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Notation: N={n€Z:n>1} and No := {0} UN.

Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and

@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x e M.
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Notation: N={n€Z:n>1} and No := {0} UN.

Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and

@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x e M.

@ We often write just M, rather than (M, x).
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).
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Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is

@ commutative: xxy = y * x for all x,y € M, and
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is
@ commutative: xxy = y * x for all x,y € M, and

@ cancellative: x * y = x * z implies y = z for all x,y,z € M.
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and

@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.

@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is
@ commutative: xxy = y * x for all x,y € M, and

@ cancellative: x * y = x * z implies y = z for all x,y,z € M.

Examples
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is
@ commutative: xxy = y * x for all x,y € M, and
@ cancellative: x * y = x * z implies y = z for all x,y,z € M.
Examples

@ No, Q>0, and {m/2" : m,n € N} are monoids with the standard addition.
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is
@ commutative: xxy = y * x for all x,y € M, and
@ cancellative: x * y = x * z implies y = z for all x,y,z € M.
Examples
@ No, Q>0, and {m/2" : m,n € N} are monoids with the standard addition.

@ N is a monoid under the standard multiplication.
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Notation: N={n€Z:n>1} and No := {0} UN.
Definition: A pair (M, %), where M is a set and * is a binary operation on M
(that is, a function % : S x S — S where (x,y) — x * y), is called a monoid if

@ = is associative: x x (y * z) = (x x y) * z for all x,y,z € M, and
@ M has an identity element: there is 1 € M such that 1% x = x* 1 = x for
all x € M.
@ We often write just M, rather than (M, x).

o A monoid M is a group if every x € M is invertible (that is, there exists
y € Msuch that xxy =y xx =1).

Remark: We will assume that every monoid we mention here is

@ commutative: xxy = y * x for all x,y € M, and
@ cancellative: x * y = x * z implies y = z for all x,y,z € M.
Examples
@ No, Q>0, and {m/2" : m,n € N} are monoids with the standard addition.
@ N is a monoid under the standard multiplication.

Q@ Z, Q, R, and C are groups under the standard addition.
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Definition (atomic monoid) |

Let (M, *) be a monoid.
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Definition (atomic monoid) |

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.
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Definition (atomic monoid) |

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.

Examples
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.

Examples

@ (No,+) is atomic and its only atom is 1.
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.

Examples
@ (No,+) is atomic and its only atom is 1.
Q@ For every d € N, the monoid (Ng, +) is atomic.
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.

Examples
@ (No,+) is atomic and its only atom is 1.
Q@ For every d € N, the monoid (Ng, +) is atomic.

@ For every r € Qso, the monoid ({0} UQ>,, +) is atomic with set of
atoms [r,2r) N Q.
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.

Examples
@ (No,+) is atomic and its only atom is 1.
Q@ For every d € N, the monoid (Ng, +) is atomic.

@ For every r € Qso, the monoid ({0} UQ>,, +) is atomic with set of
atoms [r,2r) N Q.

Q@ (N,:) is atomic with set of atoms PP, the set of prime numbers.
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Atomic Monoids

Definition (atomic monoid)

Let (M, *) be a monoid.

@ A non-invertible a € M is an atom if for all x,y € M, the equality
a = x * y implies that either x or y is invertible.

@ The monoid M is atomic if every non-invertible element of M can be
expressed as a product of atoms.

o We let A(M) denote the set of atoms of M.

Examples
@ (No,+) is atomic and its only atom is 1.
Q@ For every d € N, the monoid (Ng, +) is atomic.

@ For every r € Qso, the monoid ({0} UQ>,, +) is atomic with set of
atoms [r,2r) N Q.

Q@ (N,:) is atomic with set of atoms PP, the set of prime numbers.

@ The additive monoid M = {m/2" : m,n € No} is not atomic:
x = x/2+ x/2 for all x € M\ {0}.
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ACCP Monoids

Definition: Let (M, *) be a monoid.
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ACCP Monoids

Definition: Let (M, *) be a monoid.

o For each x € M, the set x* M := {xxy :y € M} is called a principal
ideal of M.
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ACCP Monoids

Definition: Let (M, *) be a monoid.

o For each x € M, the set x* M := {xxy :y € M} is called a principal
ideal of M.

o M satisfies the ascending chain condition on principal ideals (ACCP) if for
every sequence (x, * M)qen of principal ideals of M, there exists k € N
such that x, *x M = xx * M for every n > k.
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ACCP Monoids

Definition: Let (M, *) be a monoid.
o For each x € M, the set x* M := {xxy :y € M} is called a principal

ideal of M. = Aéfevlﬂ(i'/ﬁ—

o M satisfies the ascending chain condition on principal ideals (ACCP) if for
every“sequence (x, * M)qen of principal ideals of M, there exists k € N
such that x, *x M = xx * M for every n > k.

Proposition
Every monoid that satisfies the ACCP is atomic. Eremdse,
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Factorizations in Monoids

Let (M, *) be an atomic monoid.
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Factorizations in Monoids

Let (M, *) be an atomic monoid.
Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ai % --+* ay is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).
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Factorizations in Monoids

Let (M, *) be an atomic monoid.

Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ai % --+* ay is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).

@ For each x € M, we let Z(x) denote the set of factorizations of x.
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Factorizations in Monoids

Let (M, *) be an atomic monoid.

Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ai % --+* ay is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).

@ For each x € M, we let Z(x) denote the set of factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € M we set L(x) := {|z| : z € Z(x)}.
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Factorizations in Monoids

Let (M, *) be an atomic monoid.

Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ai % --+* ay is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).

@ For each x € M, we let Z(x) denote the set of factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € M we set L(x) := {|z| : z € Z(x)}.

[Defiiion

Let M be an atomic monoid.

@ M is a unique factorization monoid (UFM) if |Z(x)| =1 for all x € M.
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Factorizations in Monoids

Let (M, *) be an atomic monoid.

Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ai % --+* ay is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).

@ For each x € M, we let Z(x) denote the set of factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € M we set L(x) := {|z| : z € Z(x)}.

Let M be an atomic monoid.

@ M is a unique factorization monoid (UFM) if |Z(x)| =1 for all x € M.

@ M is a half-factorial monoid (HFM) if |L(x)| =1 for all x € M.
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Factorizations in Monoids

Let (M, *) be an atomic monoid.

Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ai % --+* ay is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).

@ For each x € M, we let Z(x) denote the set of factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € M we set L(x) := {|z| : z € Z(x)}.

Let M be an atomic monoid.

@ M is a unique factorization monoid (UFM) if |Z(x)| =1 for all x € M.
@ M is a half-factorial monoid (HFM) if |L(x)| =1 for all x € M.

@ M is a finite factorization monoid (FFM) if |Z(x)| < oo for all x € M.
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Factorizations in Monoids

Let (M, *) be an atomic monoid.

Q If x=a1%---%ap for atoms a1,...,ar € M, then the formal expression
ay * - -+ * ag is a factorization of x.

@ Two factorizations a3 * -+ - * a; and by * - - - * by are the same if k = £ and
there is a bijection ¢: {1,...,k} = {1,..., k} such that a; and b, are
associates (i.e., b,(j) = aju for some invertible element u € M).

@ For each x € M, we let Z(x) denote the set of factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € M we set L(x) := {|z| : z € Z(x)}.
Ex: /2 L= 26262 %1% = L (6) ={2%"%.

Definition

Let M be an atomic monoid.

@ M is a unique factorization monoid (UFM) if |Z(x)| =1 for all x € M.
@ M is a half-factorial monoid (HFM) if |L(x)| =1 for all x € M.

@ M is a finite factorization monoid (FFM) if |Z(x)| < oo for all x € M.

@ M is a bounded factorization monoid (BFM) if |L(x)| < oo for all x € M.

v
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Factorizations in Monoids (continuation)

We have the following chain of implications.
UFM = [FFM, HFM] = BFM =- atomic monoid

Examples
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Factorizations in Monoids (continuation)

We have the following chain of implications.
UFmM] = BFM =- atomic monoid
Remark: None of the implications above is reversible.
@ Toke M= (ZcNb ). Tlew Mis ahwic oad
AN = {0 4T Note

v . (0(2\)':(4\1(3*(u,ﬂc\/\%bﬂ)\:m
//T /Lf0(1\= 527

4 440ws
(>7\*—ﬁ muwbh& 9@\&4?5
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Atomicity in Commutative Rings




Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;

@ a(b+c)=ab+ ac forall a,b,c € R.
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.

@ la=aforallaeR.
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.

Notation
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.

Notation

o We will write R instead of the more cumbersome notation (R, +,-).
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.

Notation

o We will write R instead of the more cumbersome notation (R, +,-).

o For an integral domain R, we call (R \ {0}, ) the multiplicative monoid
of R, and we denote it by R*.
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.

Notation
o We will write R instead of the more cumbersome notation (R, +,-).

o For an integral domain R, we call (R \ {0}, ) the multiplicative monoid
of R, and we denote it by R*.

Examples

o Z, Q, and R are integral domains.
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.

Notation
o We will write R instead of the more cumbersome notation (R, +,-).

o For an integral domain R, we call (R \ {0}, ) the multiplicative monoid
of R, and we denote it by R*.

Examples
o Z, Q, and R are integral domains.

o Z[i]={m+in:m,n € Z} is an integral domain.
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Integral Domains: Definition and Examples

Definition: A triple (R, +,-) is a commutative ring if (R,+) and (R \ {0}, ")
are monoids and the following conditions hold:

o the monoid (R, +) is a group: every element in (R, +) is invertible;
@ a(b+c)=ab+ ac forall a,b,c € R.
o la=aforallaeR.

In addition, R is an integral domain if for all a, b € R, the equality ab=10
implies that either a=0or b = 0.

Notation
o We will write R instead of the more cumbersome notation (R, +,-).

o For an integral domain R, we call (R \ {0}, ) the multiplicative monoid
of R, and we denote it by R*.

Examples
o Z, Q, and R are integral domains.
o Z[i]={m+in:m,n € Z} is an integral domain.

o Z|v-5] ={m+ nv/—5:m,n € Z} is an integral domain.
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Integral Domains (continuation)

A Non-Example: The set C(R) consisting of all continuous functions on R is a
commutative ring that is not an integral domain.
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Atomic Domains

Definition

An integral domain is called atomic or an atomic domain if R* is an atomic
monoid.
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Atomic Domains

Definition

An integral domain is called atomic or an atomic domain if R™ is an atomic
monoid.

Examples of atomic domains
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Atomic Domains

Definition

An integral domain is called atomic or an atomic domain if R™ is an atomic
monoid.

Examples of atomic domains

@ Z is an atomic domain
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Definition

An integral domain is called atomic or an atomic domain if R™ is an atomic
monoid.

Examples of atomic domains
@ Z is an atomic domain

o Z[i] and Z[y/—5] are atomic domains
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Definition

An integral domain is called atomic or an atomic domain if R™ is an atomic
monoid.

Examples of atomic domains
@ Z is an atomic domain
@ Z[i] and Z[+/—5] are atomic domains

@ RI[x] is an atomic domain
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Definition

An integral domain is called atomic or an atomic domain if R™ is an atomic
monoid.

Examples of atomic domains
@ Z is an atomic domain
e Z[i] and Z[/—5] are atomic domains
@ RI[x] is an atomic domain

@ Noetherian domains and, in particular, the ring of integers of every
number field are atomic domains
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Definition

An integral domain is called atomic or an atomic domain if R™ is an atomic
monoid.

Examples of atomic domains
@ Z is an atomic domain
e Z[i] and Z[/—5] are atomic domains
@ RI[x] is an atomic domain

@ Noetherian domains and, in particular, the ring of integers of every
number field are atomic domains

Examples of a non-atomic domain: Let Z¢ denote the set of all complex
numbers o such that there exists a monic p(x) € Z[x] with p(a) = 0. The set
Zc is an integral domain that is not atomic.
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Felix Gotti fgotti@mit.edu Atomicity in Algebra and Combinatorics



Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs

@ Zis a UFD (this is the Fundamental Theorem of Arithmetic).
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.
Remark: Every UFD is an atomic domain.
Examples of UFDs
@ Zis a UFD (this is the Fundamental Theorem of Arithmetic).

@ Z[i] is a UFD.
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs

@ Zis a UFD (this is the Fundamental Theorem of Arithmetic).
@ Z[i] is a UFD.
e Z[x] is a UFD.
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs

@ Zis a UFD (this is the Fundamental Theorem of Arithmetic).
@ Z[i] is a UFD.
e Z[x] is a UFD.

Examples of integral domains that are not UFDs

Felix Gotti fgotti@mit.edu Atomicity in Algebra and Combinatorics



Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs

@ Zis a UFD (this is the Fundamental Theorem of Arithmetic).
@ Z[i] is a UFD.
e Z[x] is a UFD.

Examples of integral domains that are not UFDs

e Zc is not atomic, and so it is not a UFD.
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Unique Factorization Domains

Definition. An integral domain R is a unique factorization domain (or a UFD)
if R* is a UFM.

Remark: Every UFD is an atomic domain.

Examples of UFDs

@ Zis a UFD (this is the Fundamental Theorem of Arithmetic).
@ Z[i] is a UFD.
e Z[x] is a UFD.

Examples of integral domains that are not UFDs

e Zc is not atomic, and so it is not a UFD.

@ Z[v/-5] is an atomic domain that is not a UFD: for instance,

6=2-3=(1—+/—5)(1++/—5)
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Atomic Integral Domains

Definition. Let R be an integral domain. Then

@ R is a finite factorization domain (FFD) if R* is an FFM,
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Atomic Integral Domains

Definition. Let R be an integral domain. Then
@ R is a finite factorization domain (FFD) if R* is an FFM,

@ R is a half-factorial domain (HFD) if R* is an HFM, and
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Atomic Integral Domains

Definition. Let R be an integral domain. Then
@ R is a finite factorization domain (FFD) if R* is an FFM,
@ R is a half-factorial domain (HFD) if R* is an HFM, and
@ R is a bounded factorization domain (BFD) if R* is a BFM.
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Atomic Integral Domains

Definition. Let R be an integral domain. Then
@ R is a finite factorization domain (FFD) if R* is an FFM,
@ R is a half-factorial domain (HFD) if R* is an HFM, and
@ R is a bounded factorization domain (BFD) if R* is a BFM.

As for monoids, we have the following chain of implications.
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Atomic Integral Domains

Definition. Let R be an integral domain. Then
@ R is a finite factorization domain (FFD) if R* is an FFM,
@ R is a half-factorial domain (HFD) if R* is an HFM, and
@ R is a bounded factorization domain (BFD) if R* is a BFM.

As for monoids, we have the following chain of implications.

UFD = [FFD, HFD] = BFD = atomic domain

Examples

@ Z[v-5] is both an FFD and an HFD but it is not a UFD (Exercise).
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Atomic Integral Domains

Definition. Let R be an integral domain. Then
@ R is a finite factorization domain (FFD) if R* is an FFM,
@ R is a half-factorial domain (HFD) if R* is an HFM, and
@ R is a bounded factorization domain (BFD) if R* is a BFM.

As for monoids, we have the following chain of implications.

UFD = [FFD, HFD] = BFD = atomic domain

Examples
@ Z[v-5] is both an FFD and an HFD but it is not a UFD (Exercise).
@ The subring Z[x?, x*] of Z[x] is a BFD that is not an HFD (Exercise).
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Atomic Integral Domains

Definition. Let R be an integral domain. Then
@ R is a finite factorization domain (FFD) if R* is an FFM,
@ R is a half-factorial domain (HFD) if R* is an HFM, and
@ R is a bounded factorization domain (BFD) if R* is a BFM.

As for monoids, we have the following chain of implications.

UFD = [FFD, HFD] = BFD = atomic domain

Examples
@ Z[V/-5] is both an FFD and an HFD but it is not a UFD (Exercise).
@ The subring Z[x?, x*] of Z[x] is a BFD that is not an HFD (Exercise).
@ The subring R #C[x] of C[x] is a BFD that is not an FFD (Exercise).
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +
- c g Lny A
generated by {1/p: p € P}. M,?pg| f‘* Ay ?lb. N e .?( A }
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

@ The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

@ The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).

© Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).

(]

© Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.

@ R can be checked to be an integral domain.
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).

(]

© Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.

©

R can be checked to be an integral domain.

@ Since M satisfies the ACCP, one can easily check that R also satisfies the
ACCP.
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).

(]

© Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.

©

R can be checked to be an integral domain.

@ Since M satisfies the ACCP, one can easily check that R also satisfies the
ACCP.

@ Therefore R is an atomic domain.
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).

(]

© Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.

©

R can be checked to be an integral domain.

@ Since M satisfies the ACCP, one can easily check that R also satisfies the
ACCP.

Therefore R is an atomic domain.

©

@ Since x = (X%)p for every p € P, the integral domain R is not a BFD.
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A Non-BFD Atomic Domain

Example

@ Let P be the set of primes, and consider the submonoid M of (Q>o, +)
generated by {1/p : p € P}.

The monoid M satisfies the ACCP and A(M) = {1/p : p € P} (Exercise).

(]

© Now let R be the set of polynomial expressions with rational coefficients
and exponents in M.

©

R can be checked to be an integral domain.

@ Since M satisfies the ACCP, one can easily check that R also satisfies the
ACCP.

@ Therefore R is an atomic domain.

@ Since x = (X%)p for every p € P, the integral domain R is not a BFD.

Remark: There are atomic domains that do not satisfy the ACCP. The first
one was constructed by A. Grams in 1974.
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Atomicity in Lattices
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).

@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).
@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).

@ Transitivity: If x <y and y < z, then x < z (for all x,y,z € P).
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).
@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).

@ Transitivity: If x <y and y < z, then x < z (for all x,y,z € P).

We write P instead of (P, <). Let P be a poset.
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).

@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).

@ Transitivity: If x <y and y < z, then x < z (for all x,y,z € P).
We write P instead of (P, <). Let P be a poset.

@ P has a 0 if there exists 0 € P such that 0 < x for all x € P.
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).
@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).

@ Transitivity: If x <y and y < z, then x < z (for all x,y,z € P).
We write P instead of (P, <). Let P be a poset.

@ P has a 0 if there exists 0 € P such that 0 < x for all x € P.

o We write x <y when x < y and x < z < y for some z implies that z = x
or z =y, in which case we say that y covers x.
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).
@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).

@ Transitivity: If x <y and y < z, then x < z (for all x,y,z € P).

We write P instead of (P, <). Let P be a poset.
@ P has a 0 if there exists 0 € P such that 0 < x for all x € P.

o We write x <y when x < y and x < z < y for some z implies that z = x
or z =y, in which case we say that y covers x.

@ P is graded if there is a rank function p: P — Np such that for all
x,y € P

(a) x <y implies that p(x) < p(y),
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Definition of a Poset

Definition. A partially ordered set (or poset) is a pair (P, <) consisting of a
set P and a binary relation < satisfying the following properties.

@ Reflexivity: x < x (for all x € P).
@ Antisymmetry: If x <y and y < x, then x =y (for all x,y € P).

@ Transitivity: If x <y and y < z, then x < z (for all x,y,z € P).

We write P instead of (P, <). Let P be a poset.
@ P has a 0 if there exists 0 € P such that 0 < x for all x € P.

o We write x <y when x < y and x < z < y for some z implies that z = x
or z =y, in which case we say that y covers x.
@ P is graded if there is a rank function p: P — Np such that for all
x,y € P
(a) x <y implies that p(x) < p(y),
(b) x <y implies that p(x) + 1 = p(y).
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Examples of Posets

@ A totally ordered set is a poset where any two elements are comparable.
For instance, N or [n] := {1,2,..., n} for every n € N.
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Examples of Posets

@ A totally ordered set is a poset where any two elements are comparable.
For instance, N or [n] := {1,2,..., n} for every n € N.

@ The power sets 2" := {S: S C N} and 2" := {S : S C [n]} are posets
under inclusion.
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Examples of Posets

@ A totally ordered set is a poset where any two elements are comparable.
For instance, N or [n] := {1,2,..., n} for every n € N.

@ The power sets 2" := {S: S C N} and 2" := {S : S C [n]} are posets
under inclusion.

@ For each n € N, the set D, of all divisors of n is a poset if a < b means
that a divides b as integers.
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Examples of Posets

@ A totally ordered set is a poset where any two elements are comparable.
For instance, N or [n] := {1,2,..., n} for every n € N.

@ The power sets 2" := {S: S C N} and 2" := {S : S C [n]} are posets
under inclusion.

@ For each n € N, the set D, of all divisors of n is a poset if a < b means
that a divides b as integers.

@ A finite poset P can be represented by its Hasse diagram: a graph whose
vertices are the elements of P and whose edges are the covered relations
such that if s < t, then s is drawn below t with respect to the y-axis.
Below are the Hasse diagrams of 2P

SN D)

fnee fe. %3

>

5\7) 533
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.

Lo e 0
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.

@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.

o9 e 0
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.
@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.
Examples
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.
@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.
Examples

@ [n] and N are lattices, where aVV b = max{a, b} and a A b = min{a, b}.
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.
@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.
Examples

@ [n] and N are lattices, where aVV b = max{a, b} and a A b = min{a, b}.

@ 2"l and 2V are lattices, where AV B=AUB and AAB=AnNB.

Pl
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.
@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.
Examples

@ [n] and N are lattices, where aVV b = max{a, b} and a A b = min{a, b}.
@ 2! and 2" are lattices, where AV B=AUB and AAB=ANB.
@ D, is a lattice, where aV b = lcm(a, b) and a A b = gcd(a, b).

M
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.
@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.
Examples

@ [n] and N are lattices, where aVV b = max{a, b} and a A b = min{a, b}.
@ 2! and 2" are lattices, where AV B=AUB and AAB=ANB.
@ D, is a lattice, where aV b = lcm(a, b) and a A b = gcd(a, b).

@ The poset with Hasse diagran@s not a lattice.
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Lattice: Definition and Examples

Definition: Let P be a poset.

o If S:={s1,...,sn} C P has a least upper bound (resp., a greatest lower
bound) in P, we denote it by VS :=s1 V -+ Vs, (resp.,
AS :=s1 A+ As,) and call it the join (resp., meet) of s1,. .., s,.
@ The poset P is called a lattice if every finite subset of P has both a join
and a meet.
Examples

@ [n] and N are lattices, where aVV b = max{a, b} and a A b = min{a, b}.
@ 21" and 2" are lattices, where AV B=AUB and AAB=ANB.

@ D, is a lattice, where aV b = lcm(a, b) and a A b = gcd(a, b).

@ The poset with Hasse diagram X is not a lattice.

@ Below are the Hasse diagrams of the lattices with five elements.
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Atomic Lattices

Let L be a lattice with 0.

o An element r € L is an atom if it covers 0.
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Atomic Lattices

Definition

Let L be a lattice with 0.
o An element r € L is an atom if it covers 0.

o If every element of L is the join of atoms, then L is atomic.

Example of Atomic Lattices

@ The lattjcg with Hasse diagram <> is atomic while the lattice with Hasse

diagra not.
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Atomic Lattices

Definition

Let L be a lattice with 0.
o An element r € L is an atom if it covers 0.

o If every element of L is the join of atoms, then L is atomic.

Example of Atomic Lattices

@ The lattice with Hasse diagram <> is atomic while the lattice with Hasse
diagram <t> is not.

Q 21 and/ZN\are lattices, where AV B=AUB and AANB =ANB.
NoT oot .
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Factorizations in Lattices

Let L be an atomic lattice.

Q Ifx=aV---Vas for atoms a1,...,ar € L, then the formal expression
a1 V---V ap is a factorization of x if it is irredundant, that is, VA < x for
each A C {a1,...,ac}. For x € L, we let Z(x) denote the set of
factorizations of x.
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Factorizations in Lattices

Let L be an atomic lattice.

Q Ifx=aV---Vas for atoms a1,...,ar € L, then the formal expression
a1 V---V ap is a factorization of x if it is irredundant, that is, VA < x for
each A C {a1,...,ac}. For x € L, we let Z(x) denote the set of

factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € L we set L(x) := {|z| : z € Z(x)}.
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Factorizations in Lattices

Let L be an atomic lattice.

Q Ifx=aV---Vas for atoms a1,...,ar € L, then the formal expression
a1 V---V ap is a factorization of x if it is irredundant, that is, VA < x for
each A C {a1,...,ac}. For x € L, we let Z(x) denote the set of

factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € L we set L(x) := {|z| : z € Z(x)}.

Definition

Let L be an atomic lattice.

@ is a unique factorization lattice (UFL) if |Z(x)| =1 for all x € L.
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Factorizations in Lattices

Let L be an atomic lattice.

Q Ifx=aV---Vas for atoms a1,...,ar € L, then the formal expression
a1 V---V ap is a factorization of x if it is irredundant, that is, VA < x for
each A C {a1,...,ac}. For x € L, we let Z(x) denote the set of

factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € L we set L(x) := {|z| : z € Z(x)}.

Definition

Let L be an atomic lattice.
@ is a unique factorization lattice (UFL) if |Z(x)| =1 for all x € L.

@ is a half-factorial lattice (HFL) if |L(x)| =1 for all x € L.
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Factorizations in Lattices

Let L be an atomic lattice.

Q Ifx=aV---Vas for atoms a1,...,ar € L, then the formal expression
a1 V---V ap is a factorization of x if it is irredundant, that is, VA < x for
each A C {a1,...,ac}. For x € L, we let Z(x) denote the set of

factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € L we set L(x) := {|z| : z € Z(x)}.

Definition

Let L be an atomic lattice.
@ is a unique factorization lattice (UFL) if |Z(x)| =1 for all x € L.
@ is a half-factorial lattice (HFL) if |L(x)| =1 for all x € L.

@ is a finite factorization lattice (FFL) if |Z(x)| < oo for all x € L.
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Factorizations in Lattices

Let L be an atomic lattice.

Q Ifx=aV---Vas for atoms a1,...,ar € L, then the formal expression
a1 V---V ap is a factorization of x if it is irredundant, that is, VA < x for
each A C {a1,...,ac}. For x € L, we let Z(x) denote the set of

factorizations of x.

@ The length of a factorization z is the number of atoms it involves and is
denoted by |z|, and for x € L we set L(x) := {|z| : z € Z(x)}.

Let L be an atomic lattice.

@ is a unique factorization lattice (UFL) if |Z(x)| =1 for all x € L.
@ is a half-factorial lattice (HFL) if |L(x)| =1 for all x € L.

@ is a finite factorization lattice (FFL) if |Z(x)| < oo for all x € L.

@ is a bounded factorization lattice (BFL) if |L(x)| < oo for all x € L.
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Factorizations in Lattices (continuation)

As in the case of monoids and rings, we have the following chain of
implications.

UFL = [FFL, HFL] = BFL = atomic lattice
Examples l\/‘o‘vw, 0/ ﬂl ahon f\M/) l'c@.h‘ﬂvq % s bl
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Factorizations in Lattices (continuation)

As in the case of monoids and rings, we have the following chain of
implications.

UFL = [FFL, HFL] = BFL = atomic lattice

Examples

Felix Gotti fgotti@mit.edu Atomicity in Algebra and Combinatorics



Finite Geometric Lattice

Definition: A finite lattice L is called a geometric lattice if it satisfies the
following two conditions.

e L is atomic.
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Finite Geometric Lattice

Definition: A finite lattice L is called a geometric lattice if it satisfies the
following two conditions.

e L is atomic.

@ For all x,y € L such that both x and y cover x A y, the join x V y covers
both x and y.
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Finite Geometric Lattice

Definition: A finite lattice L is called a geometric lattice if it satisfies the
following two conditions.

e L is atomic.

@ For all x,y € L such that both x and y cover x A y, the join x V y covers
both x and y.

Remark: Geometric lattices are in natural bijection with matroids, which are
objects well studied in combinatorics.
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Finite Geometric Lattice

Definition: A finite lattice L is called a geometric lattice if it satisfies the
following two conditions.

e L is atomic.

@ For all x,y € L such that both x and y cover x A y, the join x V y covers
both x and y.

Remark: Geometric lattices are in natural bijection with matroids, which are
objects well studied in combinatorics.

Every geometric lattice is an HFL.
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