Atomicity in Algebra and Combinatorics

Felix Gotti fgotti@mit.edu

Massachusetts Institute of Technology

IAP Mathematics Lecture Series January 13, 2021

Atomicity in Commutative Monoids

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- $lacksymbol{0}$ * is associative: x*(y*z)=(x*y)*z for all $x,y,z\in M$, and
- M has an identity element: there is 1 ∈ M such that 1 * x = x * 1 = x for all x ∈ M.
- We often write just M, rather than (M, *).
- A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- \bigcirc Z, Q, R, and C are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- \bigcirc \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
- We often write just M, rather than (M, *).
- A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- \bigcirc \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
- We often write just M, rather than (M, *).
- A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

• commutative: x * y = y * x for all $x, y \in M$, and

• cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- \bigcirc \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
- We often write just M, rather than (M, *).
- A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

• commutative: x * y = y * x for all $x, y \in M$, and

• cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

• \mathbb{N}_0 , $\mathbb{Q}_{\geq 0}$, and $\{m/2^n : m, n \in \mathbb{N}_0\}$ are monoids with the standard addition.

- N is a monoid under the standard multiplication.
- \bigcirc \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Felix Gotti fgotti@mit.edu

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

• commutative: x * y = y * x for all $x, y \in M$, and

• cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- $\bigcirc \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- \bigcirc \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

- N is a monoid under the standard multiplication.
- $igodoldsymbol{0}$ \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

() \mathbb{N}_0 , $\mathbb{Q}_{\geq 0}$, and $\{m/2^n : m, n \in \mathbb{N}_0\}$ are monoids with the standard addition.

 \bigcirc N is a monoid under the standard multiplication.

O \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- **(a)** *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

Examples

() \mathbb{N}_0 , $\mathbb{Q}_{\geq 0}$, and $\{m/2^n : m, n \in \mathbb{N}_0\}$ are monoids with the standard addition.

 $\textcircled{0} \mathbb{N} \text{ is a monoid under the standard multiplication.}$

 \bigcirc \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under the standard addition.

Notation: $\mathbb{N} = \{n \in \mathbb{Z} : n \ge 1\}$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

Definition: A pair (M, *), where M is a set and * is a binary operation on M (that is, a function $*: S \times S \to S$ where $(x, y) \mapsto x * y$), is called a monoid if

- is associative: x * (y * z) = (x * y) * z for all $x, y, z \in M$, and
- *M* has an identity element: there is $1 \in M$ such that 1 * x = x * 1 = x for all $x \in M$.
 - We often write just M, rather than (M, *).
 - A monoid M is a group if every $x \in M$ is invertible (that is, there exists $y \in M$ such that x * y = y * x = 1).

Remark: We will assume that every monoid we mention here is

- commutative: x * y = y * x for all $x, y \in M$, and
- cancellative: x * y = x * z implies y = z for all $x, y, z \in M$.

- **1** \mathbb{N}_0 , $\mathbb{Q}_{\geq 0}$, and $\{m/2^n : m, n \in \mathbb{N}_0\}$ are monoids with the standard addition.
- $\textcircled{0} \mathbb{N} \text{ is a monoid under the standard multiplication.}$
- $\textcircled{O} \ \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{R}, \ \text{and} \ \mathbb{C} \ \text{are groups under the standard addition}.$

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- $(\mathbb{N}_0, +)$ is atomic and its only atom is 1.
- For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- laces (\mathbb{N}, \cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- $(\mathbb{N}_0, +)$ is atomic and its only atom is 1.
- **(a)** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- laces (\mathbb{N}, \cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.

• We let $\mathcal{A}(M)$ denote the set of atoms of M.

- $(\mathbb{N}_0, +)$ is atomic and its only atom is 1.
- **(a)** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- \bigcirc (\mathbb{N}, \cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- $(\mathbb{N}_0, +)$ is atomic and its only atom is 1.
- **(a)** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- \bigcirc (\mathbb{N}, \cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- (\mathbb{N}_0 , +) is atomic and its only atom is 1.
- For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- \bigcirc (\mathbb{N}, \cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- (\mathbb{N}_0 , +) is atomic and its only atom is 1.
- **②** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- \bigcirc (\mathbb{N}, \cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- (\mathbb{N}_0 , +) is atomic and its only atom is 1.
- **②** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- lacepsilon (\mathbb{N},\cdot) is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- (\mathbb{N}_0 , +) is atomic and its only atom is 1.
- **②** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- $igl(\mathbb{N},\cdot)$ is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid M = {m/2ⁿ : m, n ∈ N₀} is not atomic: x = x/2 + x/2 for all x ∈ M \ {0}.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- (\mathbb{N}_0 , +) is atomic and its only atom is 1.
- **②** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- **(** \mathbb{N}, \cdot **)** is atomic with set of atoms \mathbb{P} , the set of prime numbers.
- The additive monoid $M = \{m/2^n : m, n \in \mathbb{N}_0\}$ is not atomic: x = x/2 + x/2 for all $x \in M \setminus \{0\}$.

Definition (atomic monoid)

Let (M, *) be a monoid.

- A non-invertible $a \in M$ is an atom if for all $x, y \in M$, the equality a = x * y implies that either x or y is invertible.
- The monoid *M* is atomic if every non-invertible element of *M* can be expressed as a product of atoms.
- We let $\mathcal{A}(M)$ denote the set of atoms of M.

- (\mathbb{N}_0 , +) is atomic and its only atom is 1.
- **②** For every $d \in \mathbb{N}$, the monoid $(\mathbb{N}_0^d, +)$ is atomic.
- For every r ∈ Q_{>0}, the monoid ({0} ∪ Q_{≥r}, +) is atomic with set of atoms [r, 2r) ∩ Q.
- **(** \mathbb{N}, \cdot **)** is atomic with set of atoms \mathbb{P} , the set of prime numbers.

The additive monoid
$$M = \{m/2^n : m, n \in \mathbb{N}_0\}$$
 is not atomic:
 $x = x/2 + x/2$ for all $x \in M \setminus \{0\}$.

Definition: Let (M, *) be a monoid.

- For each x ∈ M, the set x ∗ M := {x ∗ y : y ∈ M} is called a principal ideal of M.
- M satisfies the ascending chain condition on principal ideals (ACCP) if for every sequence (x_n * M)_{n∈N} of principal ideals of M, there exists k ∈ N such that x_n * M = x_k * M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic.

Definition: Let (M, *) be a monoid.

- For each $x \in M$, the set $x * M := \{x * y : y \in M\}$ is called a principal ideal of M.
- *M* satisfies the ascending chain condition on principal ideals (ACCP) if for every sequence $(x_n * M)_{n \in \mathbb{N}}$ of principal ideals of *M*, there exists $k \in \mathbb{N}$ such that $x_n * M = x_k * M$ for every $n \ge k$.

Proposition

Every monoid that satisfies the ACCP is atomic.

Definition: Let (M, *) be a monoid.

- For each x ∈ M, the set x ∗ M := {x ∗ y : y ∈ M} is called a principal ideal of M.
- M satisfies the ascending chain condition on principal ideals (ACCP) if for every sequence (x_n * M)_{n∈ℕ} of principal ideals of M, there exists k ∈ ℕ such that x_n * M = x_k * M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic.

Definition: Let (M, *) be a monoid.

- For each $x \in M$, the set $x * M := \{x * y : y \in M\}$ is called a principal ideal of M. $\Rightarrow Ascending$.
- M satisfies the ascending chain condition on principal ideals (ACCP) if for every sequence (x_n * M)_{n∈ℕ} of principal ideals of M, there exists k ∈ ℕ such that x_n * M = x_k * M for every n ≥ k.

Proposition

Every monoid that satisfies the ACCP is atomic. Exercise ,

Proof: Let M be ACCP. Sps BWOC flat 7 x EMNM* (Mx = set of invorlible elements of M). is not the product &F clements in MIM". They Jx1, 4, EMIMX. Xo=X1, Y, where WLOG KI is NOT the prod. of non-most elevents. Inductively, J(xn) and (Yn): Xn= Xn+1 Yn+1, and Xn is Not the pred. 10 non-invertible. Now the see (XnM) is an asc. Chein of Princ. ideals, and so JrEN: XxM=Xx+1M. Then Yn+1, EMX. These fore we get a contrel.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for x ∈ M we set L(x) := {|z| : z ∈ Z(x)}.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.
- *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1,...,k} → {1,...,k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for x ∈ M we set L(x) := {|z| : z ∈ Z(x)}.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.
- *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- So For each $x \in M$, we let Z(x) denote the set of factorizations of x.

The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for x ∈ M we set L(x) := {|z| : z ∈ Z(x)}.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.

• *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in M$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.

• *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in M$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.

• *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in M$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.

• *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in M$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.

• *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

Let (M, *) be an atomic monoid.

- If $x = a_1 * \cdots * a_\ell$ for atoms $a_1, \ldots, a_\ell \in M$, then the formal expression $a_1 * \cdots * a_\ell$ is a factorization of x.
- Two factorizations a₁ * · · · * a_ℓ and b₁ * · · · * b_k are the same if k = ℓ and there is a bijection φ: {1, . . . , k} → {1, . . . , k} such that a_j and b_{φ(j)} are associates (i.e., b_{φ(j)} = a_ju for some invertible element u ∈ M).
- For each $x \in M$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in M$ we set $L(x) := \{|z| : z \in Z(x)\}$. $E x : (M_r(\{ \{ 0 \} V \ N \ge 2 \}), G = 2 + 2 + 2 = 3 + 3 = 1.6) = \{ 7, 9 \}.$ Definition

- *M* is a unique factorization monoid (UFM) if |Z(x)| = 1 for all $x \in M$.
- *M* is a half-factorial monoid (HFM) if |L(x)| = 1 for all $x \in M$.
- *M* is a finite factorization monoid (FFM) if $|Z(x)| < \infty$ for all $x \in M$.
- *M* is a bounded factorization monoid (BFM) if $|L(x)| < \infty$ for all $x \in M$.

We have the following chain of implications.

$$\mathsf{UFM} \Rightarrow \mathsf{[FFM, HFM]} \Rightarrow \mathsf{BFM} \Rightarrow \mathsf{atomic\ monoid}$$

Examples
()
$$M = 203052_{13_{1}} - ... 3$$
 is NOT a HFM as $L(6) = 52_{13_{3}}$.
However, M is a FFM. EHPM to FFM) on aso EHFM to UFM?
(2) $M = (50400_{321}^{+})$ with $A(M) = 52_{14} \cap R$. We have
 $M = (50400_{321}^{+})$ with $A(M) = 52_{14} \cap R$. We have
 $M = 5 = (2 + \frac{1}{M}) + (3 - \frac{1}{M})$
 $2(5)$ where for all $n \in \mathbb{N}$.
 $= 3M$ is NOT a FFM. However it is NOT
difficult to see that M is a BFM.

Factorizations in Monoids (continuation)

We have the following chain of implications.

$\mathsf{UFM} \Rightarrow \mathsf{[FFM, HFM]} \Rightarrow \mathsf{BFM} \Rightarrow \mathsf{atomic\ monoid}$

Remark: None of the implications above is reversible.

B Take
$$M = (\mathbb{Z} \times \mathbb{N}_{0,1}t)$$
. Then M is a housic and
 $A(M) = E(\alpha_{1,1}): \alpha \in \mathbb{R}^{2}$. Note
 $(\alpha_{1,2}) = En_{1,1} + (\alpha_{1,1}) = |\mathbb{Z}[\alpha_{2,2}|] = \infty$
 $(\alpha_{1,2}) = E^{2}$.
 $(\alpha_{1,2}) = E^$

Atomicity in Commutative Rings

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

- the monoid (R, +) is a group: every element in (R, +) is invertible;
- a(b+c) = ab + ac for all $a, b, c \in R$.
- 1a = a for all $a \in R$.

In addition, R is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

•
$$a(b+c) = ab + ac$$
 for all $a, b, c \in R$.

• 1a = a for all $a \in R$.

In addition, R is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

•
$$a(b+c) = ab + ac$$
 for all $a, b, c \in R$.

• 1a = a for all $a \in R$.

In addition, R is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R,+,\cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

•
$$a(b+c) = ab + ac$$
 for all $a, b, c \in R$.

• 1a = a for all $a \in R$.

In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R,+,\cdot).$
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

• 1a = a for all $a \in R$.

In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

• 1a = a for all $a \in R$.

In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

• We will write R instead of the more cumbersome notation $(R, +, \cdot)$.

 For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

• 1a = a for all $a \in R$.

In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

• 1a = a for all $a \in R$.

In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

• 1a = a for all $a \in R$.

In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

Definition: A triple $(R, +, \cdot)$ is a commutative ring if (R, +) and $(R \setminus \{0\}, \cdot)$ are monoids and the following conditions hold:

• the monoid (R, +) is a group: every element in (R, +) is invertible;

• 1a = a for all $a \in R$.

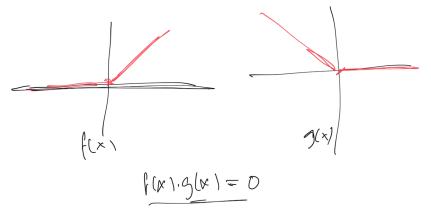
In addition, *R* is an integral domain if for all $a, b \in R$, the equality ab = 0 implies that either a = 0 or b = 0.

Notation

- We will write R instead of the more cumbersome notation $(R, +, \cdot)$.
- For an integral domain R, we call (R \ {0}, ·) the multiplicative monoid of R, and we denote it by R^{*}.

- \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are integral domains.
- $\mathbb{Z}[i] = \{m + in : m, n \in \mathbb{Z}\}$ is an integral domain.
- $\mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ is an integral domain.

A Non-Example: The set $C(\mathbb{R})$ consisting of all continuous functions on \mathbb{R} is a commutative ring that is not an integral domain.



An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- $\mathbb{R}[x]$ is an atomic domain
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- $\mathbb{R}[x]$ is an atomic domain
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- $\mathbb{R}[x]$ is an atomic domain
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- $\mathbb{R}[x]$ is an atomic domain
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- $\mathbb{R}[x]$ is an atomic domain
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

An integral domain is called atomic or an atomic domain if R^* is an atomic monoid.

Examples of atomic domains

- $\bullet \ \mathbb{Z}$ is an atomic domain
- $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-5}]$ are atomic domains
- $\mathbb{R}[x]$ is an atomic domain
- Noetherian domains and, in particular, the ring of integers of every number field are atomic domains

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

• \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).

- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

• \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).

- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\overline{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\bar{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Remark: Every UFD is an atomic domain.

Examples of UFDs

- \mathbb{Z} is a UFD (this is the Fundamental Theorem of Arithmetic).
- $\mathbb{Z}[i]$ is a UFD.
- $\mathbb{Z}[x]$ is a UFD.

- $\bar{\mathbb{Z}}_{\mathbb{C}}$ is not atomic, and so it is not a UFD.
- $\mathbb{Z}[\sqrt{-5}]$ is an atomic domain that is not a UFD: for instance, $6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- *R* is a bounded factorization domain (BFD) if *R*^{*} is a BFM.

As for monoids, we have the following chain of implications.

 $\mathsf{UFD} \Rightarrow \mathsf{[FFD, HFD]} \Rightarrow \mathsf{BFD} \Rightarrow \mathsf{atomic} \ \mathsf{domain}$

- $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).
- The subring $\mathbb{R} + \mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- *R* is a bounded factorization domain (BFD) if *R*^{*} is a BFM.

As for monoids, we have the following chain of implications.

 $\mathsf{UFD} \Rightarrow [\mathsf{FFD}, \mathsf{HFD}] \Rightarrow \mathsf{BFD} \Rightarrow \mathsf{atomic} \ \mathsf{domain}$

- $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).
- The subring $\mathbb{R} + \mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- R is a bounded factorization domain (BFD) if R^* is a BFM.

As for monoids, we have the following chain of implications.

 $\textbf{UFD} \Rightarrow \textbf{[FFD, HFD]} \Rightarrow \textbf{BFD} \Rightarrow \textbf{atomic domain}$

- $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).
- The subring $\mathbb{R} + \mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- R is a bounded factorization domain (BFD) if R^* is a BFM.

As for monoids, we have the following chain of implications.

 $\mathsf{UFD} \Rightarrow [\mathsf{FFD}, \mathsf{HFD}] \Rightarrow \mathsf{BFD} \Rightarrow \mathsf{atomic} \ \mathsf{domain}$

- $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).
- The subring $\mathbb{R} + \mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- R is a bounded factorization domain (BFD) if R^* is a BFM.

As for monoids, we have the following chain of implications.

 $\mathsf{UFD} \Rightarrow [\mathsf{FFD}, \, \mathsf{HFD}] \Rightarrow \mathsf{BFD} \Rightarrow \mathsf{atomic} \, \mathsf{domain}$

- **Q** $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- ② The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).
- The subring $\mathbb{R} + \mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- R is a bounded factorization domain (BFD) if R^* is a BFM.

As for monoids, we have the following chain of implications.

 $\mathsf{UFD} \Rightarrow \mathsf{[FFD, HFD]} \Rightarrow \mathsf{BFD} \Rightarrow \mathsf{atomic} \ \mathsf{domain}$

Examples

- **Q** $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).

• The subring $\mathbb{R} + \mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

Definition. Let R be an integral domain. Then

- R is a finite factorization domain (FFD) if R^* is an FFM,
- R is a half-factorial domain (HFD) if R^* is an HFM, and
- R is a bounded factorization domain (BFD) if R^* is a BFM.

As for monoids, we have the following chain of implications.

 $\mathsf{UFD} \Rightarrow \mathsf{[FFD, HFD]} \Rightarrow \mathsf{BFD} \Rightarrow \mathsf{atomic} \ \mathsf{domain}$

- **Q** $\mathbb{Z}[\sqrt{-5}]$ is both an FFD and an HFD but it is not a UFD (Exercise).
- The subring $\mathbb{Z}[x^2, x^3]$ of $\mathbb{Z}[x]$ is a BFD that is not an HFD (Exercise).
- The subring $\mathbb{R} + \mathcal{K}\mathbb{C}[x]$ of $\mathbb{C}[x]$ is a BFD that is not an FFD (Exercise).

A Non-BFD Atomic Domain

Example

• Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}$. $M = \mathcal{F} \not \ll_1 \frac{1}{p_1} + \cdots \neq_d \frac{1}{p_k} : \mathcal{A}_{1, \cdots, d_k} \not \in \mathcal{N} \not \ll_1 \mathcal{P}_{1, \cdots, d_k} \not \in \mathcal{P}_{1, \cdots, d_k}$

• The monoid M satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).

- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since *M* satisfies the ACCP, one can easily check that *R* also satisfies the ACCP.
- Therefore R is an atomic domain.

• Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

A Non-BFD Atomic Domain

Example

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore R is an atomic domain.

• Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore R is an atomic domain.

• Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore R is an atomic domain.
- Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore *R* is an atomic domain.

• Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore R is an atomic domain.
- Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore R is an atomic domain.

• Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

- Let \mathbb{P} be the set of primes, and consider the submonoid M of $(\mathbb{Q}_{\geq 0}, +)$ generated by $\{1/p : p \in \mathbb{P}\}.$
- **③** The monoid *M* satisfies the ACCP and $\mathcal{A}(M) = \{1/p : p \in \mathbb{P}\}$ (Exercise).
- Now let R be the set of polynomial expressions with rational coefficients and exponents in M.
- R can be checked to be an integral domain.
- Since M satisfies the ACCP, one can easily check that R also satisfies the ACCP.
- Therefore *R* is an atomic domain.

• Since $x = (x^{\frac{1}{p}})^p$ for every $p \in \mathbb{P}$, the integral domain R is not a BFD.

Atomicity in Lattices

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \leq x$ (for all $x \in P$).

- O Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- *P* has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- P is graded if there is a rank function $\rho \colon P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \leq x$ (for all $x \in P$).

- Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- *P* has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho \colon P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).

If $x \leq y$ and $y \leq z$, then $x \leq z$ (for all $x, y, z \in P$).

- P has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho: P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

- Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- P has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho: P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

- Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- *P* has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho \colon P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

- Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- P has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho \colon P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

- Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- P has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho: P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \leq y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

- Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

- P has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho \colon P \to \mathbb{N}_0$ such that for all $x, y \in P$
 - (a) x < y implies that $\rho(x) < \rho(y)$,
 - (b) $x \lessdot y$ implies that $\rho(x) + 1 = \rho(y)$.

Definition. A partially ordered set (or poset) is a pair (P, \leq) consisting of a set *P* and a binary relation \leq satisfying the following properties.

• Reflexivity: $x \le x$ (for all $x \in P$).

- Solution Antisymmetry: If $x \le y$ and $y \le x$, then x = y (for all $x, y \in P$).
- Transitivity: If $x \le y$ and $y \le z$, then $x \le z$ (for all $x, y, z \in P$).

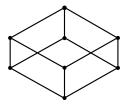
We write P instead of (P, \leq) . Let P be a poset.

- P has a $\hat{0}$ if there exists $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$.
- We write x < y when x < y and x ≤ z ≤ y for some z implies that z = x or z = y, in which case we say that y covers x.
- *P* is graded if there is a rank function $\rho \colon P \to \mathbb{N}_0$ such that for all $x, y \in P$

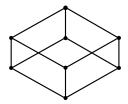
(a)
$$x < y$$
 implies that $\rho(x) < \rho(y)$,

(b) $x \lessdot y$ implies that $\rho(x) + 1 = \rho(y)$.

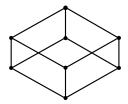
- A totally ordered set is a poset where any two elements are comparable. For instance, \mathbb{N} or $[n] := \{1, 2, ..., n\}$ for every $n \in \mathbb{N}$.
- The power sets $2^{\mathbb{N}} := \{S : S \subseteq \mathbb{N}\}$ and $2^{[n]} := \{S : S \subseteq [n]\}$ are posets under inclusion.
- For each $n \in \mathbb{N}$, the set D_n of all divisors of n is a poset if $a \leq b$ means that a divides b as integers.
- A finite poset P can be represented by its Hasse diagram: a graph whose vertices are the elements of P and whose edges are the covered relations such that if s < t, then s is drawn below t with respect to the y-axis. Below are the Hasse diagrams of 2^[3]:



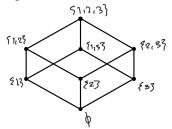
- A totally ordered set is a poset where any two elements are comparable. For instance, \mathbb{N} or $[n] := \{1, 2, ..., n\}$ for every $n \in \mathbb{N}$.
- The power sets $2^{\mathbb{N}} := \{S : S ⊆ \mathbb{N}\}$ and $2^{[n]} := \{S : S ⊆ [n]\}$ are posets under inclusion.
- For each n ∈ N, the set D_n of all divisors of n is a poset if a ≤ b means that a divides b as integers.
- A finite poset P can be represented by its Hasse diagram: a graph whose vertices are the elements of P and whose edges are the covered relations such that if s < t, then s is drawn below t with respect to the y-axis. Below are the Hasse diagrams of 2^[3]:



- A totally ordered set is a poset where any two elements are comparable. For instance, \mathbb{N} or $[n] := \{1, 2, ..., n\}$ for every $n \in \mathbb{N}$.
- The power sets $2^{\mathbb{N}} := \{S : S ⊆ \mathbb{N}\}$ and $2^{[n]} := \{S : S ⊆ [n]\}$ are posets under inclusion.
- For each $n \in \mathbb{N}$, the set D_n of all divisors of n is a poset if $a \leq b$ means that a divides b as integers.
- A finite poset P can be represented by its Hasse diagram: a graph whose vertices are the elements of P and whose edges are the covered relations such that if s < t, then s is drawn below t with respect to the y-axis. Below are the Hasse diagrams of 2^[3]:



- A totally ordered set is a poset where any two elements are comparable. For instance, \mathbb{N} or $[n] := \{1, 2, ..., n\}$ for every $n \in \mathbb{N}$.
- The power sets $2^{\mathbb{N}} := \{S : S ⊆ \mathbb{N}\}$ and $2^{[n]} := \{S : S ⊆ [n]\}$ are posets under inclusion.
- For each $n \in \mathbb{N}$, the set D_n of all divisors of n is a poset if $a \leq b$ means that a divides b as integers.
- A finite poset P can be represented by its Hasse diagram: a graph whose vertices are the elements of P and whose edges are the covered relations such that if s < t, then s is drawn below t with respect to the y-axis. Below are the Hasse diagrams of 2^[3]:



Definition: Let P be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- **(** [n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- $2^{[n]} \text{ and } 2^{\mathbb{N}} \text{ are lattices, where } A \lor B = A \cup B \text{ and } A \land B = A \cap B.$
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- The poset with Hasse diagram X is not a lattice.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamond \diamond \diamond$$

Definition: Let P be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- **(**n**]** and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- $\ \, {\bf 0} \ \, 2^{[n]} \ \, {\rm and} \ \, 2^{\mathbb{N}} \ \, {\rm are} \ \, {\rm lattices}, \ \, {\rm where} \ \, A \vee B = A \cup B \ \, {\rm and} \ \, A \wedge B = A \cap B.$
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- The poset with Hasse diagram X is not a lattice.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamond \diamond \diamond$$

Definition: Let P be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- [n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- $\ \, { \ \, { \ \, { 0 } } } \ \, { and } \ \, { 2^{\mathbb{N}} } \ \, { are \ \, { lattices, \ \, where } } \ \, A \vee B = A \cup B \ \, { and } \ \, A \wedge B = A \cap B.$
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- The poset with Hasse diagram X is not a lattice.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamond \diamond \diamond$$

Definition: Let P be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- **(**n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- ② $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \lor B = A \cup B$ and $A \land B = A \cap B$.
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- The poset with Hasse diagram X is not a lattice.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamond \diamond \diamond$$

Definition: Let *P* be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- **(**n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- **2** $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.
- $\bigcirc D_n$ is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- ullet The poset with Hasse diagram lacksquare is not a lattice.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamond \diamond \diamond$$

Definition: Let *P* be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- **(**n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- **2** $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- The poset with Hasse diagram X is not a lattice.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamond \diamond \diamond$$

Definition: Let *P* be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

Examples

- **(**n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- **2** $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.

• The poset with Hasse diagram s not a lattice.

Below are the Hasse diagrams of the lattices with five elements

$$\diamond \diamond \diamond \phi$$

Definition: Let P be a poset.

- If S := {s₁,..., s_n} ⊆ P has a least upper bound (resp., a greatest lower bound) in P, we denote it by ∨S := s₁ ∨ · · · ∨ s_n (resp., ∧S := s₁ ∧ · · · ∧ s_n) and call it the join (resp., meet) of s₁,..., s_n.
- The poset *P* is called a lattice if every finite subset of *P* has both a join and a meet.

- **(**n] and \mathbb{N} are lattices, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.
- **2** $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.
- D_n is a lattice, where $a \lor b = \operatorname{lcm}(a, b)$ and $a \land b = \operatorname{gcd}(a, b)$.
- Below are the Hasse diagrams of the lattices with five elements.

$$\diamond \diamondsuit \phi \diamondsuit$$

Definition

- Let *L* be a lattice with $\hat{0}$.
 - An element $r \in L$ is an atom if it covers $\hat{0}$.

If every element of *L* is the join of atoms, then *L* is atomic.

Example of Atomic Lattices

The lattice with Hasse diagram time is atomic while the lattice with Hasse diagram is not.

2 $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.

Definition

Let *L* be a lattice with $\hat{0}$.

- An element $r \in L$ is an atom if it covers $\hat{0}$.
- If every element of *L* is the join of atoms, then *L* is atomic.

Example of Atomic Lattices

The lattice with Hasse diagram diagram is not.

2 $2^{[n]}$ and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.

Definition

Let *L* be a lattice with $\hat{0}$.

- An element $r \in L$ is an atom if it covers $\hat{0}$.
- If every element of L is the join of atoms, then L is atomic.

Example of Atomic Lattices

• The lattice with Hasse diagram \oplus is atomic while the lattice with Hasse diagram \oint is not.

•
$$2^{[n]}$$
 and $2^{\mathbb{N}}$ are lattices, where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$.
 \downarrow $\underbrace{\operatorname{NOT}_{A \to \infty} c}_{C}$.

- If x = a₁ ∨ · · · ∨ a_ℓ for atoms a₁, . . . , a_ℓ ∈ L, then the formal expression a₁ ∨ · · · ∨ a_ℓ is a factorization of x if it is irredundant, that is, ∨A < x for each A ⊊ {a₁, . . . , a_ℓ}. For x ∈ L, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for x ∈ L we set L(x) := {|z| : z ∈ Z(x)}.

Definition

- is a unique factorization lattice (UFL) if |Z(x)| = 1 for all $x \in L$.
- is a half-factorial lattice (HFL) if |L(x)| = 1 for all $x \in L$.
- is a finite factorization lattice (FFL) if $|Z(x)| < \infty$ for all $x \in L$.
- is a bounded factorization lattice (BFL) if $|L(x)| < \infty$ for all $x \in L$.

- If x = a₁ ∨ · · · ∨ a_ℓ for atoms a₁, . . . , a_ℓ ∈ L, then the formal expression a₁ ∨ · · · ∨ a_ℓ is a factorization of x if it is irredundant, that is, ∨A < x for each A ⊊ {a₁, . . . , a_ℓ}. For x ∈ L, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in L$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- is a unique factorization lattice (UFL) if |Z(x)| = 1 for all $x \in L$.
- is a half-factorial lattice (HFL) if |L(x)| = 1 for all $x \in L$.
- is a finite factorization lattice (FFL) if $|Z(x)| < \infty$ for all $x \in L$.
- is a bounded factorization lattice (BFL) if $|L(x)| < \infty$ for all $x \in L$.

- If x = a₁ ∨ · · · ∨ a_ℓ for atoms a₁, . . . , a_ℓ ∈ L, then the formal expression a₁ ∨ · · · ∨ a_ℓ is a factorization of x if it is irredundant, that is, ∨A < x for each A ⊊ {a₁, . . . , a_ℓ}. For x ∈ L, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in L$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- is a unique factorization lattice (UFL) if |Z(x)| = 1 for all $x \in L$.
- is a half-factorial lattice (HFL) if |L(x)| = 1 for all $x \in L$.
- is a finite factorization lattice (FFL) if $|Z(x)| < \infty$ for all $x \in L$.
- is a bounded factorization lattice (BFL) if $|L(x)| < \infty$ for all $x \in L$.

- If x = a₁ ∨ · · · ∨ a_ℓ for atoms a₁, . . . , a_ℓ ∈ L, then the formal expression a₁ ∨ · · · ∨ a_ℓ is a factorization of x if it is irredundant, that is, ∨A < x for each A ⊊ {a₁, . . . , a_ℓ}. For x ∈ L, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in L$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- is a unique factorization lattice (UFL) if |Z(x)| = 1 for all $x \in L$.
- is a half-factorial lattice (HFL) if |L(x)| = 1 for all $x \in L$.
- is a finite factorization lattice (FFL) if $|Z(x)| < \infty$ for all $x \in L$.
- is a bounded factorization lattice (BFL) if $|L(x)| < \infty$ for all $x \in L$.

- If $x = a_1 \vee \cdots \vee a_\ell$ for atoms $a_1, \ldots, a_\ell \in L$, then the formal expression $a_1 \vee \cdots \vee a_\ell$ is a factorization of x if it is irredundant, that is, $\vee A < x$ for each $A \subsetneq \{a_1, \ldots, a_\ell\}$. For $x \in L$, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in L$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- is a unique factorization lattice (UFL) if |Z(x)| = 1 for all $x \in L$.
- is a half-factorial lattice (HFL) if |L(x)| = 1 for all $x \in L$.
- is a finite factorization lattice (FFL) if $|Z(x)| < \infty$ for all $x \in L$.
- is a bounded factorization lattice (BFL) if $|L(x)| < \infty$ for all $x \in L$.

- If x = a₁ ∨ · · · ∨ a_ℓ for atoms a₁, . . . , a_ℓ ∈ L, then the formal expression a₁ ∨ · · · ∨ a_ℓ is a factorization of x if it is irredundant, that is, ∨A < x for each A ⊊ {a₁, . . . , a_ℓ}. For x ∈ L, we let Z(x) denote the set of factorizations of x.
- The length of a factorization z is the number of atoms it involves and is denoted by |z|, and for $x \in L$ we set $L(x) := \{|z| : z \in Z(x)\}$.

Definition

- is a unique factorization lattice (UFL) if |Z(x)| = 1 for all $x \in L$.
- is a half-factorial lattice (HFL) if |L(x)| = 1 for all $x \in L$.
- is a finite factorization lattice (FFL) if $|Z(x)| < \infty$ for all $x \in L$.
- is a bounded factorization lattice (BFL) if $|L(x)| < \infty$ for all $x \in L$.

Factorizations in Lattices (continuation)

As in the case of monoids and rings, we have the following chain of implications.

$\mathsf{UFL} \Rightarrow \mathsf{[FFL, HFL]} \Rightarrow \mathsf{BFL} \Rightarrow \mathsf{atomic} \ \mathsf{lattice}$

Examples Norm of the above implications as is reversible.

Factorizations in Lattices (continuation)

As in the case of monoids and rings, we have the following chain of implications.

```
\mathsf{UFL} \Rightarrow \mathsf{[FFL, HFL]} \Rightarrow \mathsf{BFL} \Rightarrow \mathsf{atomic} \ \mathsf{lattice}
```

- L is atomic.
- For all x, y ∈ L such that both x and y cover x ∧ y, the join x ∨ y covers both x and y.

Remark: Geometric lattices are in natural bijection with matroids, which are objects well studied in combinatorics.

Theorem

- L is atomic.
- For all x, y ∈ L such that both x and y cover x ∧ y, the join x ∨ y covers both x and y.

Remark: Geometric lattices are in natural bijection with matroids, which are objects well studied in combinatorics.

Theorem

- L is atomic.
- For all x, y ∈ L such that both x and y cover x ∧ y, the join x ∨ y covers both x and y.

Remark: Geometric lattices are in natural bijection with matroids, which are objects well studied in combinatorics.

- L is atomic.
- For all x, y ∈ L such that both x and y cover x ∧ y, the join x ∨ y covers both x and y.

Remark: Geometric lattices are in natural bijection with matroids, which are objects well studied in combinatorics.

Theorem

References

- D. D. Anderson, D. F. Anderson, and M. Zafrullah: *Factorization in integral domains*, J. Pure Appl. Algebra **69** (1990) 1–19.
- A. Geroldinger and F. Halter-Koch: Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics Vol. 278, Chapman & Hall/CRC, Boca Raton, 2006.
- A. Grams: Atomic rings and the ascending chain condition for principal ideals, Math. Proc. Cambridge Philos. Soc. **75** (1974) 321–329.
- F. Halter-Koch: *Finiteness theorems for factorizations*, Semigroup Forum **44** (1992) 112–117.
- M. Roitman: *Polynomial extensions of atomic domains*, J. Pure Appl. Algebra **87** (1993) 187–199.
 - R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, New York, 2011.

THANK YOU!