56 mph: breaking the commutative law by just a bit

David A. Vogan, Jr.

January 6, 2020

I talked about some interesting 2×2 complex matrices

$$A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}. $$

Here are rules for multiplying these matrices:

$$A^2 = B^2 = C^2 = -I_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$AB = C = -BA, \quad BC = A = -CB, \quad CA = B = -AC.$$

Problems

1. Find 2×2 invertible complex matrices X and Y so that

$$XY = -YX.$$

Can you find 3×3 matrices with this property?

2. Suppose z is a complex number not equal to 1 (think of z as close to 1). Can you find $n \times n$ invertible complex matrices U and V with the property that

$$UV = VU \cdot (zI_n)?$$

Here I_n is the $n \times n$ identity matrix. This is a math version of the Heisenberg “canonical commutation relations;” says U and V almost commute, but not quite.

3. Suppose w is a complex number not equal to 0 (think of w as close to 0). Can you find $n \times n$ complex matrices P and Q with the property that

$$PQ = QP + wI_n?$$

If w is Planck’s constant, this is the canonical commutation relations: in a slightly different way, says that P and Q almost commute, but not quite.

4. Can you get different answers to (2) and (3) if you replace \mathbb{C} by another field?