
Discrete vs. Smooth Geometry

Discrete differential geometry attempts to construct a theory of geometry
on piecewise-flat structures like polyhedra, while preserving structure from
smooth differential geometry. A surprising property of this field is that there is
“no free lunch:” Often times there is no single discrete theory that completely
captures the smooth picture. We illustrate a simple example below.

Take γ(t) : R→ R2 to be a curve in the plane. For this exercise, we will assume that ‖γ′(t)‖2 6= 0
for all t ∈ R and that γ(t) is a smooth function. Define the arc length function s(t) as the function
that goes from the parameter t of the curve to the arc length of the curve in interval [0, t]:

s(t) :=
∫ t

0
‖γ′(t̄)‖2 dt̄.

Assume that s(t) has a differentiable inverse function t(s), so we can write t(s(t0)) = t0 and
s(t(s0)) = s0.

Problem 1: Define γ(s) := γ(t(s)). Show that ‖γ′(s)‖2 = 1, where the prime indicates differenti-
ation with respect to s.

We call the derivative T(s) := γ′(s) the unit tangent of the curve γ(s) at parameter s. If we think
of a car driving along γ, by considering γ(s) instead of γ(t), the previous problem shows that our
car drives with a constant speed of 1!

Problem 2: Argue that there exists a differentiable function θ(s) such that T(s) = (cos θ(s), sin θ(s)).
Defining N(s) := (− sin θ(s), cos(θ(s))) to be T(s) rotated 90◦ in the plane, argue that T′(s) =
κ(s)N(s), where κ(s) := θ′(s). Draw a picture of a curve γ, and at a point on γ draw the corre-
sponding vectors T and N.

Here, the vector N(s) is the normal vector to the curve at γ(s). The function κ(s) is the curvature
of γ. Intuitively, if we think of a car driving along γ with constant speed, then κN is the force
experienced by the passengers as the driver turns the steering wheel to stay on γ; the angle of the
steering wheel is given by θ′.

Problem 3: Suppose γ(a) = γ(b) and that T(a) = T(b); in other words, our car drove in a loop.
Argue that θ(b) = θ(a) + 2πk for some k ∈ Z; conclude

∫ b
a κ(s) ds = 2πk.

The quantity k is known as the turning angle between s = a and s = b; it measures the number of
times the car turned around in its path.

Now we’re going to do something more advanced. Take another function v(s) : [0, 1] → R2, and
define a one-parameter family of curves γr(s) := γ(s) + r · v(s), where r ∈ R; assume v(0) =
v(1) = (0, 0). We can think of the length of γr between s = 0 and s = 1 as a function

`(r) :=
∫ 1

0
‖γ′(s) + r · v′(s)‖2 ds.
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Problem 4 (optional): Show that `′(0) =
∫ 1

0 κ(s)N(s) · v(s) ds.
Note: This problem is tricky! You’ll need to apply differentiation under the integral sign and
integration by parts, recalling our boundary conditions on v(·).

Now let’s consider a discrete curve, consisting of a sequence of line segments between points
p1, p2, . . . , pn ∈ R2.

Problem 5: Define θi to be the signed angle between the vector pi − pi−1 and the vector pi+1 − pi.
Argue that if p1 = pn, then ∑n−1

i=1 θi = 2πk for some k ∈ Z.
Hint: Recall the exterior angle theorem from classical geometry.

The integer k is a discrete analog of the turning angle of our smooth curve γ! Based on this
observation, we could use the angle θi to measure the curvature of our discrete curve at vertex pi
while preserving an analog of the turning angle formula from problem 3. Plus, θi is a reasonable
measure of curvature: θi = 0 when the two segments that meet at pi are collinear.

We can think of the length of our discrete curve as a function

`(p1, . . . , pn) :=
n−1

∑
i=1
‖pi+1 − pi‖2.

Problem 6 (optional): For i 6∈ {1, n}, show that ‖∇pi`(·)‖2 =
∣∣∣2 sin θi
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∣∣∣.
Note: This problem is also tricky! Draw lots of pictures and apply trigonometry liberally.

Here we have derived our “no free lunch” property! In the smooth picture, we derived two impor-
tant places where the same curvature function κ(s) appears: The turning angle theorem (problem
3) and the first variation of arc length (problem 4). If attempt to discretize curvature in such a
way that the turning angle theorem is preserved, we likely would choose curvature at vertex pi
to be proportional to θi (problem 5). But, if we wish to discretize curvature so that it gives the
proper derivative of arc length, we should use a value proportional to 2 sin θi

2 (problem 6). Sadly
we cannot have both at the same time!

At the same time, for θ ≈ 0, notice 2 sin θ
2 ≈ θ, so as we refine a discrete approximation of a smooth

curve the two notions agree.
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