Discrete vs. Smooth Geometry

Discrete differential geometry attempts to construct a theory of geometry
on piecewise-flat structures like polyhedra, while preserving structure from
smooth differential geometry. A surprising property of this field is that there is
“no free lunch:” Often times there is no single discrete theory that completely
captures the smooth picture. We illustrate a simple example below.

Take 7(t) : R — R? to be a curve in the plane. For this exercise, we will assume that ||/ (#)]|2 # 0
for all t € R and that (t) is a smooth function. Define the arc length function s(t) as the function
that goes from the parameter ¢ of the curve to the arc length of the curve in interval [0, ¢]:

() = [ 12/ (P) .

Assume that s(t) has a differentiable inverse function t(s), so we can write t(s(fp)) = ty and
s(t(s0)) = so.

Problem 1: Define 7(s) := y(t(s)). Show that ||7/(s)|2 = 1, where the prime indicates differenti-
ation with respect to s.

We call the derivative T(s) := 9/(s) the unit tangent of the curve 7(s) at parameter s. If we think
of a car driving along 7y, by considering <y (s) instead of y(t), the previous problem shows that our
car drives with a constant speed of 1!

Problem 2: Argue that there exists a differentiable function 6(s) such that T(s) = (cos6(s),sin0(s)).
Defining N(s) := (—sinf(s),cos(0(s))) to be T(s) rotated 90° in the plane, argue that T'(s) =
k(s)N(s), where k(s) := 6/(s). Draw a picture of a curve 7, and at a point on y draw the corre-
sponding vectors T and N.

Here, the vector N(s) is the normal vector to the curve at y(s). The function «x(s) is the curvature
of . Intuitively, if we think of a car driving along < with constant speed, then xN is the force
experienced by the passengers as the driver turns the steering wheel to stay on 7y; the angle of the
steering wheel is given by 6.

Problem 3: Suppose y(a) = v(b) and that T(a) = T(b); in other words, our car drove in a loop.
Argue that 0(b) = 6(a) + 27tk for some k € Z; conclude /”b x(s)ds = 27tk.

The quantity k is known as the turning angle between s = a and s = b; it measures the number of
times the car turned around in its path.

Now we’re going to do something more advanced. Take another function v(s) : [0,1] — R?, and
define a one-parameter family of curves v,(s) := (s) + - v(s), where r € R; assume v(0) =
v(1) = (0,0). We can think of the length of 7, between s = 0 and s = 1 as a function

() = [ 176+ 0 ads.
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Problem 4 (optional): Show that ¢'(0) = /01 k(s)N(s) - v(s) ds.
Note: This problem is tricky! You'll need to apply differentiation under the integral sign and
integration by parts, recalling our boundary conditions on v(-).

Now let’s consider a discrete curve, consisting of a sequence of line segments between points
p1, P2, -, Pn € R2

Problem 5: Define 0; to be the signed angle between the vector p; — p;_1 and the vector p;11 — p;.
Argue that if p; = py,, then 25_1:11 0, = 27tk for some k € Z.
Hint: Recall the exterior angle theorem from classical geometry.

The integer k is a discrete analog of the turning angle of our smooth curve 7! Based on this
observation, we could use the angle 6; to measure the curvature of our discrete curve at vertex p;
while preserving an analog of the turning angle formula from problem 3. Plus, 6; is a reasonable
measure of curvature: §; = 0 when the two segments that meet at p; are collinear.

We can think of the length of our discrete curve as a function

n—1

p1,-opn) =Y |lpisa — pill-
i=

Problem 6 (optional): For i ¢ {1,n}, show that ||V, £(-)|2 = ‘2 sin %‘
Note: This problem is also tricky! Draw lots of pictures and apply trigonometry liberally.

Here we have derived our “no free lunch” property! In the smooth picture, we derived two impor-
tant places where the same curvature function «(s) appears: The turning angle theorem (problem
3) and the first variation of arc length (problem 4). If attempt to discretize curvature in such a
way that the turning angle theorem is preserved, we likely would choose curvature at vertex p;
to be proportional to 0; (problem 5). But, if we wish to discretize curvature so that it gives the
proper derivative of arc length, we should use a value proportional to 2 sin % (problem 6). Sadly
we cannot have both at the same time!

At the same time, for 6 ~ 0, notice 2 sin % ~ 0, so as we refine a discrete approximation of a smooth
curve the two notions agree.



