
ELLIPTIC CURVES

BJORN POONEN

1. Introduction

The theme of this lecture is to show how geometry can be used to understand the rational
number solutions to a polynomial equation. We will illustrate this first in the context of
rational points on the circle, and then in the more advanced context of rational points on
elliptic curves.

2. Plane curves

A plane curve is the set of the form {(x, y) : f(x, y) = 0} where f(x, y) is a polynomial
in two variables1. There are many familiar examples of plane curves: for example, the circle
(x−3)2+(y−2)2 = 4 is a plane curve, as one sees by taking f(x, y) to be (x−3)2+(y−2)2−4.

The degree of the curve is the total degree of f ; this is defined as the maximum of i + j
such that there is a monomial axiyj occurring in f with a 6= 0. For example, the plane curve

x3 − 10x2y2 + 9y3 + 20 = 0

has degree 4 because of the monomial of largest degree in it is −10x2y2, which has degree
2 + 2 = 4.

3. Plane curves of low degree

Plane curves of degree 1 are called lines. They are defined by equations of the form
ax + by + c = 0, where a, b are not both zero.

Plane curves of degree 2 are called conic sections or simply conics2. These have the form
ax2 + bxy + cy2 + dx + ey + f = 0 for some numbers a, b, c, d, e, f . The conics include ellipses
(including the special case of circles), parabolas, hyperbolas, as well as some “degenerate”
cases such as xy = 0 (two lines), x2 − 1 = 0, or x2 = 0. (Many people would exclude some
or all of the last three examples from the definition of a conic.)

Plane curves of degree 3 are called cubic curves. The general form of such a curve is

a1x
3 + a2x

2y + a3xy2 + a4y
3 + a5x

2 + a6xy + a7y
2 + a8x + a9y + a10 = 0,

Date: January 3, 2012.
1There are a couple of subtleties here. Usually we will insist that f(x, y) be non-constant, since if f(x, y) is

a constant, then the set of solutions to f(x, y) = 0 is either empty or the entire plane, depending on whether
the constant is nonzero or zero. Also, although we will usually draw the set of solutions to f(x, y) = 0 where
x and y are real numbers, the theory actually works better when one allows complex number solutions as
well. For example, the “curve” x2 + y2 + 1 = 0 looks empty if one only takes real number solutions, but
acquires many solutions if x and y are permitted to be complex numbers.

2This is because they arise by slicing a double cone in space such as x2 + y2 = z2 with a plane.
1
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where a1, . . . , a10 are numbers. Elliptic curves are certain cubic curves; namely they are the
curves defined by equations of the form

y2 = f(x)

or equivalently

y2 − f(x) = 0,

where f(x) is a squarefree polynomial of degree 3. “Squarefree” means that f(x) has no
multiple roots. For instance

y2 = x3 − 3x + 2

does not define an elliptic curve, because

x3 − 3x + 2 = (x− 1)2(x + 2)

has 1 as a multiple root. Similarly y2 = x3 is not an elliptic curve, but y2 = x3 + 1 is an
elliptic curve.

By scaling the coordinates and translating, one can convert any elliptic curve into one of
the form y2 = x3 + Ax + B where A and B are numbers. It turns out that a general curve
of the form y2 = x3 + Ax + B is an elliptic curve (i.e., x3 + Ax + B is squarefree) if and
only if −(4A3 + 27B2) 6= 0. From now on, we will always assume that our elliptic curves are
defined over Q; this means that the coefficients of the polynomial defining an elliptic curve
are rational numbers.

4. Rational points on the unit circle

A rational point on a plane curve is a point on the curve with rational coordinates. For
example, (3/5, 4/5) is a rational point on the circle C with equation x2 + y2 = 1.

As one can guess from the example just given, rational points on C are closely related to
Pythagorean triples, i.e., the positive integer solutions to a2 + b2 = c2. In fact, if a, b, c are
any integers satisfying a2 + b2 = c2 and c 6= 0, then (a/c, b/c) will be a rational point on C.

Conversely, if (x, y) is a rational point on C. then by choosing a common denominator
for x and y one can write x = a/c and y = b/c for some integers a, b, c with c 6= 0, and the
relation x2 + y2 = 1 implies a2 + b2 = c2. If moreover x and y are nonzero, then a, b, c will
all be nonzero, and (|a|, |b|, |c|) will be a Pythagorean triple.

It would be nice to have a description of all the rational points on C, because then we
would have a description of all the Pythagorean triples. Our goal now is to find such a
description using geometry!

Consider the following construction. Start with the rational point P = (−1, 0) on C. Fix
a rational number t. Draw the line Lt with slope t passing through P . This line will intersect
the circle at a second point Qt (which depends on the number t).

By “pure thought” (no calculation), one can see that Qt must have rational coordinates,
because its x-coordinate will arise as the solution to a quadratic equation which already has
one rational root, namely the x-coordinate of P , and then the y-coordinate of Qt also will be
rational (either by the same argument with y-coordinates, or by using the equation of Lt).

For the incredulous, here is a full calculation of Qt. The equation of Lt (in point-slope
form) is y = t(x + 1). To intersect this with C, which is x2 + y2 = 1, substitute y = t(x + 1)
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to obtain

x2 + t2(x + 1)2 = 1

(x2 − 1) + t2(x + 1)2 = 0

(x + 1)
[
(x− 1) + t2(x + 1)

]
= 0.

It was not just luck that the quadratic polynomial in x factored: the point is that it had to
have x + 1 as a factor, because we already knew that there was a point with x-coordinate
−1 in the intersection Lt∩C, namely P = (−1, 0). Anyway, discarding the root x = −1 and
solving for the other possible x-coordinate, we see that Qt has x-coordinate (1− t2)/(1 + t2),
and y-coordinate

y = t(x + 1) = t

[
1− t2

1 + t2
+ 1

]
=

2t

t2 + 1
so

Qt =

(
1− t2

1 + t2
,

2t

t2 + 1

)
.

Since t is rational, Qt has rational coordinates.

We now claim that every rational point on the circle C other than P = (−1, 0) arises as
Qt for exactly one rational number t. In other words, we obtain a parameterization of all
the rational points on C (except P ). Recall that Q denotes the set of all rational numbers.

Theorem 1. The map

Q→ {rational points on x2 + y2 = 1 other than (−1, 0)}

t 7→ Qt =

(
1− t2

1 + t2
,

2t

t2 + 1

)
is a bijection (one-to-one correspondence).

Proof. There is a natural candidate for the inverse map, namely, the map

{rational points on x2 + y2 = 1 other than (−1, 0)} → Q

(r, s) 7→ s

r + 1

sending a rational point Q = (r, s) on x2 + y2 = 1 other than (−1, 0) to the slope of the line
←→
PQ.

To show that the two maps are indeed inverse bijections, it suffices to show that the
composition of the two maps in either order is the identity map.

Given t ∈ Q, if we construct Qt, and then take the slope of the line
←−→
PQt, we get t back,

by definition of Qt.
On the other hand, if we start with a rational point Q 6= P on C, compute the slope t of

the line L =
←→
PQ, and then construct Qt, then Qt = Q because Q is the intersection point

other than P of C with the line L through P with slope t. This completes the proof. �

If m and n are positive integers with m > n, and we take t = n/m, then we obtain the
point

Qt =

(
m2 − n2

m2 + n2
,

2mn

m2 + n2

)
,

so (m2 − n2, 2mn, m2 + n2) is a Pythagorean triple.
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5. Elliptic curves and Bézout’s theorem

In the previous section we parameterized the rational points on the circle x2 + y2 = 1 by
choosing one rational point P , and then looking at the intersection of the circle with lines
through P having rational slope.

Rational points on elliptic curves cannot be parameterized in the same way. What goes
wrong if we try to repeat the procedure that worked for the circle? To fix ideas, let us see
what happens for the elliptic curve E with equation

y2 = x(x + 5)(x− 5).

(The polynomial x(x + 5)(x − 5) has distinct roots, so this is an elliptic curve.) The point
S = (−4, 6) is on the curve E. What happens if we intersect E with the line L of slope 1
through S?

The equation of L is y− 6 = 1(x + 4), i.e., y = x + 10. Substituting this into the equation
of E yields

(x + 10)2 = x(x + 5)(x− 5)

0 = x3 − x2 − 45x− 100

0 = (x + 4)(x2 − 5x− 25).

The linear factor x + 4 was expected; it reflects the fact that the point S = (−4, 6) is one
of the intersection points. But this time the leftover factor is quadratic, not linear, so there
is no reason to expect the other solutions to be rational. In fact, here they are not, because
the discriminant of x2 − 5x − 25 is (−5)2 − 4(1)(−25) = 125, which is not the square of a
rational number. Hence we do not obtain rational points on E in this way.

Geometrically what has happened is that L intersects E in three points, one of which is
S, and the best that can be said of the other two is that their coordinates will involve a
single square root. It is not an accident that L ∩ E consisted of three points here, whereas
the intersection of L with a circle in the previous section had two points. These are special
cases of the following general result:

Bézout’s Theorem (almost): It is almost true that the intersection of a curve f(x, y) = 0
of degree m with a curve g(x, y) = 0 of degree n consists of exactly mn points.

To make the theorem true, some care must be taken. For instance, the intersection of
xy = 0 and (x2 + y2)y = 0 has infinitely many points, not 2 · 3 = 6 as predicted, because
both curves contain the curve y = 0. Therefore one should insist that the two curves do not
have a curve in common. Algebraically, this is equivalent to imposing the condition that
f(x, y) and g(x, y) have no common factor.

With this assumption, it is now true that the curves intersect in at most mn points. But to
get exactly mn points, three more modifications to the problem are required. As stated, the
theorem gives the wrong answer for the number of real points in the intersection of x−2 = 0
with x2 + y2 = 1. To get the correct number of intersection points (1 · 2 = 2), one should
allow the intersection points (2,

√
−3) and (2,−

√
−3) with complex coordinates. Another

problem is illustrated by the example in which one intersects x − 1 = 0 with x2 + y2 = 1.
We again expect 2 intersection points, but there is only one, the point (1, 0) where the line
is tangent to the circle. The fix this time is to count intersection points with multiplicity:
points where two curves meet tangentially count extra! The third problem is that certain
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curves such as y − 1 = 0 and y − 2 = 0 do not meet as many times as they are supposed to.
One finds the “missing intersection points” by adjoining a “line of points at infinity” to the
plane, to form the projective plane P2. The lines y− 1 = 0 and y− 2 = 0 meet at one of the
points on this line at infinity. (We will not discuss this in detail here.)

The precise version of Bézout’s Theorem reads as follows:

Bézout’s Theorem: Let X and Y be curves of degrees m and n in the projective plane
over the complex numbers. If X and Y have no curves in common, then the number of
intersection points in X ∩ Y with complex coordinates, counted with multiplicities, equals
mn exactly.

6. The addition law on elliptic curves

Let E be an elliptic curve defined over Q. We have seen that a line L with rational slope
passing through one rational point on E need not intersect E in rational points only. But if L
passes through two rational points on E, then the third intersection point must be rational.
This is because a cubic polynomial with two rational roots must have all its roots rational.
One caveat is required, however: in order to be guaranteed to have three intersection points,
one must interpret intersections in the sense of Bézout’s Theorem; in other words, one really
should work in the projective plane P2 over the complex numbers, and count intersection
points with multiplicities. It turns out that among all the points at infinity in the projective
plane, only one is on the elliptic curve; i.e., the line at infinity intersects E only in one point
(with multiplicity 3, though!)

For an example, let us go back to the elliptic curve E of the previous section with equation
y2 = x(x + 5)(x− 5). Let us find the third intersection point U of E with the line L through
S = (−4, 6) and T = (0, 0). The equation of L is y = (−3/2)x, so the x-coordinates of the
points in E ∩ L are solutions to

[(−3/2)x]2 = x(x + 5)(x− 5)

0 = x3 − (9/4)x2 − 25x

0 = x(x + 4)(x− 25/4).

As usual, the factors x and x + 4 had to be there, because S and T are in E ∩ L. Now
we know that the x-coordinate of U is 25/4, and using the equation of L we find that
U = (25/4,−75/8).

Using this operation of taking two rational points and producing a third, we can develop
a way to “add” two points. One says that the set of rational points on E can be given
the structure of an abelian group. This means that there is an operation + that takes two
rational points P, Q on E and produces a new rational point P + Q on E, such that the
following axioms are satisfied:

• (P + Q) + R = P + (Q + R) for all rational points P, Q, R on E.
• There exists a rational point O on E such that P + O = P and O + P = P for all

rational points P on E.
• For any rational point P on E there exists a point Q (also called −P ) such that

P + Q = O and Q + P = O.
• P + Q = Q + P for all rational points P and Q on E.

The specific addition rule on the elliptic curve is characterized by the following rules:
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(1) The point O mentioned in the abelian group axioms is the unique point on E at
infinity mentioned earlier.

(2) If a line L intersects E in three rational points P, Q,R (listed with multiplicity), then
P + Q + R = O.

Note: a line passes through O if and only if it is vertical or is the “line at infinity.”
As an example, let us compute S + T , where S = (−4, 6) and T = (0, 0). We already

found that the line y = (−3/2)x intersects E in the points S, T , and U = (25/4,−75/8).
Therefore, by Rule 2, S + T + U = 0. Thus S + T = −U . The vertical line x = 25/4
intersects E in the three points U , V = (25/4, 75/8) and O, so U + V + O = O. Hence
V = −U , so S + T = V = (25/4, 75/8).

In general, the recipe for adding two points A and B on an elliptic curve E is as follows:
draw the line L through A and B. (If A = B, draw the line tangent to E at A, in order
to get a line that intersects E at A with multiplicity at least 2.) Find a third point C such
that L ∩ E consists of A, B, and C (listed with multiplicity if necessary). If C = O, then
A + B equals O; if C 6= O, A + B equals the reflection of C in the x-axis.

7. Generating all the rational points

It turns out that for some elliptic curves over Q, such as y2 = x3−x, there are only finitely
many rational points, while for others, such as the example y2 = x(x+5)(x−5) above, there
are infinitely many.

But in any case there is a deep theorem, proved by Mordell, that says that the group of
rational points on an elliptic curve E is “finitely generated.” This means there is a finite
list of rational points S on E such that all rational points on E can be generated from the
points in S by iteratively applying + to pairs of points.

On the other hand, it is not known whether there exists an algorithm that takes the
equation of an elliptic curve and outputs a finite list S of generating points as above. Re-
searchers in number theory have spent about 70 years trying to prove the existence of such
an algorithm, but the problem is still unsolved!

8. Beyond elliptic curves

A special case of an even deeper theorem of Faltings shows that if X is a nonsingular3

curve defined over Q of degree greater than 3, then there are only finitely many rational
points on X. Faltings was awarded the Fields Medal (the mathematical equivalent of the
Nobel Prize) for proving this theorem.

From the algorithmic point of view, however, things are still very mysterious: it is not
known whether there is a method for actually listing the rational points on a given nonsin-
gular curve of degree greater than 3.

For example, the French mathematician Jean-Pierre Serre challenged the mathematical
community many years ago to prove that the eight obvious rational points on x4 + y4 = 17
are the only ones; it took until 2001 for this to be proved.

3We have not defined this term, but loosely speaking it means that X has no “corners” or points where
the curve “crosses itself.”
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9. Further reading

If you would like to read more about elliptic curves, you could try the book Rational points
on elliptic curves by Silverman and Tate, Undergraduate Texts in Mathematics, Springer-
Verlag, New York, 1992. It is written at a fairly high level, though: it is really intended for
junior and senior undergraduate mathematics majors.

These notes were originally developed for the Berkeley Math Circle.
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