
18.089 Homework Problems, Part 2
Joel Brewster Lewis

July 1, 2009

50. Sketch the plane curve given by the parametric equations y = sin t, x =
√

t for t ≥ 0.

51. A particle has position vector at time t given by R(t) = t2i + t3j. Compute its velocity,
acceleration and speed as functions of t.

52. A particle has position vector at time t given by R(t) = 〈cos t, sin t, t〉. Compute its velocity,
acceleration and speed as functions of t.

53. Give the parametric equation of the line of intersection of the planes x − 2y + z = 2 and
2x + y + 3z = 3.

54. What is the intersection point of the line x−1
1

= y

2
= z+2

−2
and the plane x + y + z = 3?

55. An ellipse centered at the origin has rectangular equation x2

4
+ y2

9
= 1. Give some parametric

equations for the same curve.

56. Draw contour plot with a few level curves (three or four well-chosen heights should suffice)
for the following functions:

(a) z = 2x − y

(b) z = x2 − y2

(c) z = x3 − y

57. A function f is said to satisfy Laplace’s equation if

∂2f

∂x2
+

∂2f

∂y2
= 0.

For the following functions, verify by direct calculation that they satisfy
∂2f

∂x∂y
=

∂2f

∂y∂x
and

that they satisfy Laplace’s equation.

(a) f(x, y) = e−3x cos 3y

(b) f(x, y) = arctan y

x

(c) f(x, y) = ex sin y

58. Find the equation of the tangent plane to the following surfaces at the indicated points.

(a) z = arctan y

x
at (4, 4, π/4).
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(b) z = ex cos y at (0, 0, 1).

(c) x2

a2 + y2

b2
+ z2

c2
− 1 = 0 at (x0, y0, z0). (This surface is called an ellipsoid.)

59. Recall that the element of arclength of a curve parametrized by ~R(t) = 〈x(t), y(t)〉 is
√

(

dx

dt

)2

+

(

dy

dt

)2

. Compute the arclength of a single arch of the cycloid. (While inte-

grating, you may need to use one of the half-angle identities – see, for example,
http://en.wikipedia.org/wiki/List of trigonometric identities .)

60. Let w = y

x
, where y = r sin θ and x = r cos θ for parameters r, θ. Compute ∂w

∂r
and ∂w

∂θ
in two

ways: once by chain rule and once by direct substitution.

61. What are the directional derivatives of the following functions in the given directions at the
given points?

(a) f(x, y) = xy − x − y at (1, 1) in the direction 〈−1, 1〉.

(b) f(x, y) =
arctan x

π + arctan y
at (−1, 1) in the direction 〈2, 1〉.

(c) f(x, y, z) = x2y + y2z + z2x at (1,−2, 2) in the direction 〈1, 1, 1〉.

62. Find all critical points of the following functions, and classify them as maxima, minima or
saddle points or “impossible to tell from 2nd derivative test.” (It may help to remember that
a · b = 0 implies that either a = 0 or b = 0 or both.)

(a) f(x, y) = (x3 − x)(y3 + 3y)

(b) f(x, y) = x3 + y3 + 3xy + 5

(c) f(x, y) = x4 + y4

One of these functions has an “impossible to tell from 2nd derivative test” critical point. Is
this point actually a maximum, minimum or saddle point?

63. It is sometimes convenient to define functions by integrals of the form

F (x) =

∫ b

a

f(x, y) dy.

If f is “nice,” we can calculate the derivative F ′(x) by “differentiating under the integral
sign”:

F ′(x) =
d

dx

∫ b

a

f(x, y) dy =

∫ b

a

(

∂

∂x
f(x, y)

)

dy.

In parts (a) and (b), verify that this works by computing the integral, then the derivative
directly and comparing to what you get by differentiating under the integral sign. In part
(c), just compute the derivative F ′(x) using this method.

(a) F (x) =

∫ 1

0

x + y dy

(b) F (x) =

∫ π

0

sin xy dy
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(c) F (x) =

∫ 1

0

ex(t+1)

t + 1
dt

64. If z = sin x + sin 2y + sin 3(x + y), is z more sensitive to changes in x or in y at (0, 0)?

65. If the equations f(x) = 0 and f ′(x) = 0 have no common roots, show that every critical
point of the function z(x, y) = yf(x) + ex is a saddle point.

66. If the sum of the three numbers x, y and z is equal to 12, what is the largest possible value
for the product x · y2 · z3?

67. What is the equation of the plane passing through (1, 2, 3) that cuts a tetrahedron from the
first octant of maximal volume?

68. Find the point on the plane x + 2y + 3z = 6 that is closest to the origin. (Hint to make the
arithmetic nicer: the distance is d(x, y, z) =

√

x2 + y2 + z2, and since d ≥ 0, it is minimized
at the same points where d2 is minimized.)

69. Find the maximum and minimum values of the function f(x, y) = x2 − xy + y2 takes on the
circle x2 + y2 = 1.

70. Find the values of a and b such that the ellipse x2

a2 + y2

b2
= 1 has minimal area among all

ellipses that pass through the point (4, 1).

71. Consider the iterated integral

∫ 1

0

∫

√
x

0

f(x, y) dy dx. Draw the region in the plane that is

being integrated over. Write the integral that arises from reversing the order of integration.

72. For each of the following iterated integrals, sketch the region being integrated over and
compute the integral.

(a)

∫ 1

0

∫ x

x2

(2x + 2y) dy dx

(b)

∫ e3

1

∫ 1

y

0

exy dx dy

(c)

∫ 2

1

∫ 2x

x

dy dx

(x + y)2

73. Change the order of integration in the following iterated integrals. (You don’t need to
evaluate.)

(a)

∫ 2

0

∫ 4−x2

0

2xy dy dx

(b)

∫ e3

1

∫ 3

ln y

2 dx dy

74. Calculate the value
∫∫

R
x dA when R is the first-quadrant part of the ring between the circles

x2 + y2 = a2 and x2 + y2 = b2, 0 < a < b. (Use either order of integration.)
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75. Set up a double integral whose value is the volume of the solid under the function z =
√

1 − y2

and above the disk x2 + y2 ≤ 1. Choose an order of integration and integrate. (Hint: one
way may be easier than the other.)

76. The curve given in polar coordinates by r = 1 − sin θ is called a cardioid. Sketch it and
compute the area that it bounds.

77. The curve given in polar coordinates by r = 1 + 2 sin θ is called a limaçon. Sketch it – note
in particular the existence of an inner and outer loop. Compute the area bounded by the
inner loop.

78. Compute the following double integral by converting it to polar coordinates:

∫ 2a

0

∫

√
2ax−x2

0

x2 + y2 dy dx.

Here a is some positive constant.

79. Compute

∫ 1

0

∫ x2

0

∫ xy3

0

18x3y2z dz dy dx.

80. Find the appropriate bounds to rewrite the triple integral

∫ a

0

∫ x

0

∫ y

0

f(x, y, z) dz dy dx

with the order of integration dx dy dz.

81. Use an integral in cylindrical coordinates to find the mass of the solid bounded above the
surface z = 1 − x2 − y2 and below the xy-plane whose density is given by δ = c(r2 + z2) for
some positive constant c.

82. Complete the problem that we began near the end of class: if R is the solid that you get by
drilling a radius-1 hole through a radius-2 hemisphere, what is its centroid? (Don’t forget to
compute the volume!)

83. Figure out what solid is given in spherical coordinates by the equation ρ = 2 sin ϕ.

84. Assume that a, b and α are constants such that 0 < a < b and 0 < α < π. Compute the
volume of the region bounded by the concentric spheres ρ = a and ρ = b and by the cone
ϕ = α.

85. (a) Find the mass of a solid sphere of radius a given that the density at a point is equal to
the distance from that point to the surface of the sphere.

(b) Would the answer to the preceding problem be larger or smaller if we replaced the word
“surface” with “center”?

86. Evaluate the line integral
∫

C
xy2 dx − (x + y) dy where C is

(a) the straight line segment from (0, 0) to (1, 2);

(b) the parabolic path y = 2x2 from (0, 0) to (1, 2);
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(c) the broken line from (0, 0) to (1, 0) to (1, 2).

Sketch all three paths.

87. Let F = 〈2xy, x2 + y2〉. Compute
∫

C
F · d~P where C is the semicircular path given by

x = cos t, y = sin t for 0 ≤ t ≤ π.
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