
Chapter 7

Optimization and Minimum
Principles

7.1 Two Fundamental Examples

Within the universe of applied mathematics, optimization is often a world of its own.
There are occasional expeditions to other worlds (like differential equations), but
mostly the life of optimizers is self-contained: Find the minimum of F (x1, . . . , xn).
That is not an easy problem, especially when there are many variables xj and many
constraints on those variables. Those constraints may require Ax = b or xj ≥ 0 or
both or worse. Whole books and courses and software packages are dedicated to this
problem of constrained minimization.

I hope you will forgive the poetry of worlds and universes. I am trying to emphasize
the importance of optimization—a key component of engineering mathematics and
scientific computing. This chapter will have its own flavor, but it is strongly connected
to the rest of this book. To make those connections, I want to begin with two specific
examples. If you read even just this section, you will see the connections.

Least Squares

Ordinary least squares begins with a matrix A whose n columns are independent.
The rank is n, so ATA is symmetric positive definite. The input vector b has m
components, the output û has n components, and m > n:

Least squares problem
Normal equations for best û

Minimize ‖Au− b‖2
ATAû = ATb

(1)

Those equations ATAû = ATb say that the error residual e = b−Aû solves ATe = 0.
Then e is perpendicular to columns 1, 2, . . . , n of A. Write those zero inner products
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as (column)T(e) = 0 to find ATAû = ATb:




(column 1)T

...
(column n)T





e


 =




0
...
0


 is

ATe = 0
AT(b− Aû) = 0
ATAû = ATb .

(2)

Graphically, Figure 7.1 shows Aû as the projection of b. It is the combination of
columns of A (the point in the column space) that is nearest to b. We studied least
squares in Section 2.3, and now we notice that a second problem is solved at the
same time.

This second problem (dual problem) does not project b down onto the column
space. Instead it projects b across onto the perpendicular space. In the 3D picture,
that space is a line (its dimension is 3− 2 = 1). In m dimensions that perpendicular
subspace has dimension m − n. It contains the vectors that are perpendicular to all
columns of A. The line in Figure 7.1 is the nullspace of AT.

One of the vectors in that perpendicular space is e = projection of b ! Together, e
and û solve the two linear equations that express exactly what the figure shows:

Primal-Dual
Saddle Point
Kuhn-Tucker (KKT)

e + Aû = b
ATe = 0

m equations
n equations

(3)

We took this chance to write down three names for these very simple but so funda-
mental equations. I can quickly say a few words about each name.

Primal-Dual The primal problem is to minimize ‖Au− b‖2. This produces û. The
dual problem is to minimize ‖w − b‖2, under the condition that ATw = 0. This
produces e. We can’t solve one problem without solving the other. They are solved
together by equation (3), which finds the projections in both directions.

Saddle Point The block matrix S in those equations is not positive definite !

Saddle point matrix S =

[
I A

AT 0

]
(4)

The first m pivots are all 1’s, from the matrix I. When elimination puts zeros in
place of AT, it puts the negative definite −ATA into the zero block.

Multiply row 1 by AT

Subtract from row 2

[
I 0
−AT I

] [
I A

AT 0

]
=

[
I A
0 −ATA

]
. (5)

That elimination produced −ATA in the (2, 2) block (the “Schur complement”). So
the final n pivots will all be negative. S is indefinite, with pivots of both signs.

S doesn’t produce a pure minimum or maximum, positive or negative definite. It
leads to a saddle point (û, e). When we get up more courage, we will try to draw this.
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Kuhn-Tucker These are the names most often associated with equations like (3)
that solve optimization problems. Because of an earlier Master’s Thesis by Karush,
you often see “KKT equations.” In continuous problems, for functions instead of
vectors, the right name would be “Euler-Lagrange equations.” When the constraints
include inequalities like w ≥ 0 or Bu = d, Lagrange multipliers are still the key. For
those more delicate problems, Kuhn and Tucker earned their fame.

PSfrag replacements

Nullspace of AT

Column space of A = all vectors Au

Au = orthogonal

projection of b

e = b − Au

e
b

PSfrag replacements

Nullspace of ATC

AuW = oblique

projection of b

e = b − AuW

e

b

Figure 7.1: Ordinary and weighted least squares: min ‖b−Au‖2 and ‖Wb−WAu‖2.

Weighted Least Squares

This is a small but very important extension of the least squares problem. It involves
the same rectangular A, and a square weighting matrix W . Instead of û we write ûW

(this best answer changes with W ). You will see that the symmetric positive definite
combination C = W TW is what matters in the end.

Weighted least squares
Normal equations for ûW

Minimize ‖WAu−Wb‖2
(WA)T(WA) ûW = (WA)T(Wb)

(6)

No new mathematics, just replace A and b by WA and Wb. The equation has become

ATWTWA ûW = ATWTWb or ATCA ûW = ATCb or ATC(b−A ûW ) = 0. (7)

In the middle equation is that all-important matrix ATCA. In the last equation,
ATe = 0 has changed to ATCe = 0. When I made that change in Figure 7.1,
I lost the 90◦ angles. The line is no longer perpendicular to the plane, and the
projections are no longer orthogonal. We are still splitting b into two pieces, AûW

in the column space and e in the nullspace of ATC. The equations now include this
C = W TW :

e is “C-orthogonal”
to the columns of A

e + AûW = b
ATCe = 0

(8)

With a simple change, the equations (8) become symmetric ! Introduce w = Ce

and e = C−1w and shorten ûW to u:
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Primal-Dual
Saddle Point
Kuhn-Tucker

C−1w + Au = b
ATw = 0

(9)

This weighted saddle point matrix replaces I by C−1 (still symmetric):

Saddle point matrix S =

[
C−1 A

AT 0

]
m rows
n rows

Elimination produces m positive pivots from C−1, and n negative pivots from−ATCA:

[
C−1 A
AT 0

] [
w
u

]
=

[
b
0

]
←−−→

[
C−1 A
0 −ATCA

] [
w
u

]
=

[
b

−ATCb

]
. (10)

The “Schur complement” that appears in the 2, 2 block becomes −ATCA. We are
back to ATCAu = ATCb and all its applications.

Two more steps will finish this overview of optimization. We show how a different
vector f can appear on the right side. The bigger step is also taken by our second
example, coming now. The dual problem (for w not u) has a constraint. At first it
was ATe = 0, now it is ATw = 0, and in the example it will be ATw = f .

How do you minimize a function of e or w when these constraints

are enforced ? Lagrange showed the way, with his multipliers.

Minimizing with Constraints

The second example is a line of two springs and one mass. The function to minimize
is the energy in the springs. The constraint is the balance ATw = f between internal
forces (in the springs) and the external force (on the mass). I believe you can see
in Figure 7.2 the fundamental problem of constrained optimization. The forces are
drawn as if both springs are stretched with forces f > 0, pulling on the mass. Actually
spring 2 will be compressed (w2 is negative).

As I write those words—spring, mass, energy, force balance—I am desperately
hoping that you won’t just say “this is not my area.” Changing the example to
another area of science or engineering or economics would be easy, the problem stays
the same in all languages.

All of calculus trains us to minimize functions: Set the derivative to zero! But
the basis calculus course doesn’t deal properly with constraints. We are minimizing
an energy function E(w1, w2), but we are constrained to stay on the line w1−w2 = f .
What derivatives do we set to zero?

A direct approach is to solve the constraint equation. Replace w2 by w1−f . That
seems natural, but I want to advocate a different approach (which leads to the same
result). Instead of looking for w’s that satisfy the constraint, the idea of Lagrange is
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mass

?................................................................................................................................................................................................................................................

force w1

force w2

spring 1

spring 2

external force f ?

Internal energy in the springs
E(w) = E1(w1) + E2(w2)

Balance of internal/external forces
w1 − w2 = f (the constraint)

Constrained optimization problem

Minimize E(w) subject to w1 − w2 = f

Figure 7.2: Minimum spring energy E(w) subject to balance of forces.

to build the constraints into the function. Rather than removing w2, we will add a
new unknown u. It might seem surprising, but this second approach is better.

With n constraints on m unknowns, Lagrange’s method has m+n unknowns. The
idea is to add a Lagrange multiplier for each constraint. (Books on optimization
call this multiplier λ or π, we will call it u.) Our Lagrange function L has the
constraint w1 − w2 − f = 0 built in, and multiplied by −u:

Lagrange function L(w1, w2, u) = E1(w1) + E2(w2)− u(w1 − w2 − f) .

Calculus can operate on L, by setting derivatives (three partial derivatives!) to zero:

Kuhn-Tucker
optimality
equations

∂L

∂w1

=
dE1

dw
(w1)− u = 0 (11a)

∂L

∂w2

=
dE2

dw
(w2) + u = 0 (11b)

Lagrange
multiplier u

∂L

∂u
= −(w1 − w2 − f) = 0 (11c)

Notice how the third equation ∂L/∂u = 0 automatically brings back the constraint—
because it was just multiplied by −u. If we add the first two equations to eliminate u,
and substitute w1 − f for w2, we are back to the direct approach with one unknown.

But we don’t want to eliminate u! That Lagrange multiplier is an important
number with a meaning of its own. In this problem, u is the displacement of the
mass. In economics, u is the selling price to maximize profit. In all problems, u
measures the sensitivity of the answer (the minimum energy Emin) to a change in
the constraint. We will see this sensitivity dEmin/df in the linear case.
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Linear Case

The force in a linear spring is proportional to the elongation e, by Hooke’s Law
w = ce. Each small stretching step requires work = (force)(movement) = (ce)(∆e).
Then the integral 1

2
ce2 that adds up those small steps gives the energy stored in the

spring. We can express this energy in terms of e or w:

Energy in a spring E(w) =
1

2
c e2 =

1

2

w2

c
. (12)

Our problem is to minimize a quadratic energy E(w) subject to a linear balance
equation w1 − w2 = f . This is the model problem of optimization.

Minimize E(w) =
1

2

w2

1

c1

+
1

2

w2

2

c2

subject to w1 − w2 = f . (13)

We want to solve this model problem by geometry and then by algebra.

Geometry In the plane of w1 and w2, draw the line w1 − w2 = f . Then draw the
ellipse E(w) = Emin that just touches this line. The line is tangent to the ellipse. A
smaller ellipse from smaller forces w1 and w2 will not reach the line—those forces will
not balance f . A larger ellipse will not give minimum energy. This ellipse touches
the line at the point (w1, w2) that minimizes E(w).

PSfrag replacements

w1 > 0
tension in spring 1

w2 < 0 compression in spring 2

(w1, w2)

[
1
−1

]
and

[
u

−u

]
perpendicular to

line and ellipse

E(w) = Emin

Figure 7.3: The ellipse E(w) = Emin touches w1 − w2 = f at the solution (w1, w2).

At the touching point in Figure 7.3, the perpendiculars (1,−1) and (u,−u) to
the line and the ellipse are parallel. The perpendicular to the line is the vector
(1,−1) from the partial derivatives of w1 − w2 − f . The perpendicular to the ellipse
is (∂E/∂w1, ∂E/∂w2), from the gradient of E(w). By the optimality equations (11a)
and (11b), this is exactly (u,−u). Those parallel gradients at the solution are the
algebraic statement that the line is tangent to the ellipse.
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Algebra To find (w1, w2), start with the derivatives of w2

1
/2 c1 and w2

2
/2 c2:

Energy gradient
∂E

∂w1

=
w1

c1

and
∂E

∂w2

=
w2

c2

. (14)

Equations (11a) and (11b) in Lagrange’s method become w1/c1 = u and w2/c2 = −u.
Now the constraint w1 − w2 = f yields (c1 + c2)u = f (both w’s are eliminated):

Substitute w1 = c1u and w2 = −c2u. Then (c1 + c2)u = f . (15)

I don’t know if you recognize c1 + c2 as our stiffness matrix ATCA ! This problem
is so small that you could easily miss K = ATCA. The matrix AT in the constraint
equation ATw = w1 − w2 = f is only 1 by 2, so the stiffness matrix K is 1 by 1:

AT =
[
1 −1

]
and K = ATCA =

[
1 −1

] [
c1

c2

] [
1
−1

]
=

[
c1 + c2

]
. (16)

The algebra of Lagrange’s method has recovered Ku = f . Its solution is the movement
u = f/(c1+c2) of the mass. Equation (15) eliminated w1 and w2 using (11a) and (11b).
Now back substitution finds those energy-minimizing forces:

Spring forces w1 = c1u =
c1f

c1 + c2

and w2 = −c2u =
−c2f

c1 + c2

. (17)

Those forces (w1, w2) are on the ellipse of minimum energy Emin, tangent to the line:

E(w) =
1

2

w2

1

c1

+
1

2

w2

2

c2

=
1

2

c1f
2

(c1 + c2)2
+

1

2

c2f
2

(c1 + c2)2
=

1

2

f2

c1 + c2

= Emin . (18)

This Emin must be the same minimum value 1

2
fTK−1f as in Section . It is.

We can directly verify the mysterious fact that u measures the sensitivity of Emin

to a small change in f . Compute the derivative dEmin/df :

Lagrange multiplier = Sensitivity
d

df

(
1

2

f 2

c1 + c2

)
=

f

c1 + c2

= u . (19)

This sensitivity is linked to the observation in Figure 7.3 that one gradient is u times
the other gradient. From (11a) and (11b), that stays true for nonlinear springs.

A Specific Example

I want to insert c1 = c2 = 1 in this model problem, to see the saddle point of L more
clearly. The Lagrange function with built-in constraint depends on w1 and w2 and u:

L =
1

2
w2

1
+

1

2
w2

2
− uw1 + uw2 + uf . (20)
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The equations ∂L/∂w1 = 0 and ∂L/∂w2 = 0 and ∂L/∂u = 0 produce a beautiful
symmetric saddle-point matrix S:

∂L/∂w1 = w1 − u = 0
∂L/∂w2 = w2 + u = 0
∂L/∂u = −w1 + w2 = f

or




1 0 −1
0 1 1
−1 1 0







w1

w2

u


 =




0
0
f


 . (21)

Is this matrix S positive definite ? No. It is invertible, and its pivots are 1, 1,−2.
That −2 destroys positive definiteness—it means a saddle point:

Elimination




1 0 −1
0 1 1
−1 1 0


 −→




1 0 −1
1 1

−2


 with L =




1
0 1
−1 1 1


 .

On a symmetric matrix, elimination equals “completing the square.” The pivots
1, 1,−2 are outside the squares. The entries of L are inside the squares:

1

2
w2

1
+

1

2
w2

2
− uw1 + uw2 =

1

2

[
1(w1 − u)2 + 1(w2 + u)2 − 2(u)2

]
. (22)

The first squares (w1 − u)2 and (w2 + u)2 go “upwards,” but −2u2 goes down. This
gives a saddle point SP = (w1, w2, u) in Figure 7.4.

The eigenvalues of a symmetric matrix have the same signs as the pivots, and the
same product (which is det S = −2). Here the eigenvalues are λ = 1, 2,−1.
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U

L(w1, w2, u) L = 1

2
[(w1 − u)2 + (w2 + u)2 − 2u2] + uf

Four dimensions make it a squeeze

Saddle point SP = (w1, w2, u) =
(c1f,−c2f, f)

c1 + c2

Figure 7.4: (w1−u)2 and (w2+u)2 go up, −2u2 goes down from the saddle point SP.

The Fundamental Problem

May I describe the full linear case with w = (w1, . . . , wm) and ATw = (f1, . . . , fn) ?
The problem is to minimize the total energy E(w) = 1

2
wTC−1w in the m springs. The

n constraints ATw = f are built in by Lagrange multipliers u1, . . . , un. Multiplying
the force balance on the kth mass by −uk and adding, all n constraints are built into
the dot product uT(ATw − f). For mechanics, we use a minus sign in L:

Lagrange function L(w, u) =
1

2
wTC−1w − uT(ATw − f) . (23)
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To find the minimizing w, set the m + n first partial derivatives of L to zero:

Kuhn-Tucker
optimality
equations

∂L/∂w = C−1w − Au = 0 (24a)

∂L/∂u = −ATw + f = 0 (24b)

This is the main point, that Lagrange multipliers lead exactly to the linear equations
w = CAu and ATw = f that we studied in the first chapters of the book. By using
−u in the Lagrange function L and introducing e = Au, we have the plus signs that
appeared for springs and masses:

e = Au w = Ce f = ATw =⇒ ATCAu = f .

Important Least squares problems have e = b − Au (minus sign from voltage
drops). Then we change to +u in L. The energy E = 1

2
wTC−1w − bTw now has

a term involving b. When Lagrange sets derivatives of L to zero, he finds S !

∂L/∂w = C−1w + Au− b = 0

∂L/∂u = ATw − f = 0
or

[
C−1 A

AT 0

] [
w

u

]
=

[
b

f

]
. (25)

This system is my top candidate for the fundamental problem of scientific computing.

You could eliminate w = C(b − Au) but I don’t know if you should. If you do it,
K = ATCA will appear. Usually this is a good plan:

Remove w ATw = ATC(b− Au) = f which is ATCAu = ATCb− f . (26)

Duality and Saddle Points

We minimize the energy E(w) but we do not minimize Lagrange’s function L(w, u).
It is true that ∂L/∂w and ∂L/∂u are zero at the solution. But the matrix of second
derivatives of L is not positive definite. The solution w, u is a saddle point. It is
a minimum of L over w, and at the same time it is a maximum of L over u. A saddle
point has something to do with a horse. . . It is like the lowest point in a mountain
range, which is also the highest point as you go across.

The minimax theorem states that we can minimize first (over w) or maximize
first (over u). Either order leads to the unique saddle point, given by ∂L/∂w = 0
and ∂L/∂u = 0. The minimization removes w from the problem, and it corresponds
exactly to eliminating w from the equations (11) for “first derivatives = 0.” Every
step will be illustrated by examples (linear case first).

Allow me to use the A, C, AT notation that we already know, so I can point out
the fantastic idea of duality. The Lagrangian is L(w, u) = 1

2
wTC−1w−uT(ATw−f),

leaving out b for simplicity. We compare minimization first and maximization first:
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Minimize over w ∂L/∂w = 0 when C−1w − Au = 0. Then w = CAu and
L = −1

2
(Au)TC(Au) + uTf . This is to be maximized.

Maximize over u Key point: Lmax = +∞ if ATw 6= f . Minimizing over w
will keep ATw = f to avoid that +∞. Then L = 1

2
wTC−1w.

The maximum of a linear function like 5u is +∞. But the maximum of 0u is 0.

Now come the two second steps, maximize over u and minimize over w. Those
are the dual problems. Often one problem is called the “primal” and the other
is its “dual”—but they are reversible. Here are the two dual principles for linear
springs:

1. Choose u to maximize − 1

2
(Au)TC(Au) + uTf . Call this function −P (u).

2. Choose w to minimize 1

2
wTC−1w keeping the force balance ATw = f .

Our original problem was 2. In the language of mechanics, we were minimizing the
complementary energy E(w). Its dual problem is 1. This minimizes the potential
energy P (u), by maximizing −P (u). Most finite element systems choose that “dis-
placement method.” They work with u because it avoids the constraint ATw = f .

The dual problems 1 and 2 involve the same inputs A, C, f but they look entirely
different. Equality between minimax(L) and maximin(L) gives the duality principle
and the saddle point :

Duality of 1 and 2 max
all u

(−P (u)) = min
ATw = f

E(w) . (27)

That is the big theorem of optimization—the maximum of one problem equals
the minimum of its dual. We can find those numbers, and see that they are
equal, because the derivatives are linear. Maximizing −P (u) will minimize P (u),
which is the problem we solved in Chapter 1. Write u∗ and w∗ for the minimizer and
maximizer:

1. P (u) = 1

2
uTATCAu− uTf is Pmin = −1

2
fT(ATCA)−1f when u∗ = (ATCA)−1f

2. E(w) = 1

2
wTC−1w is Emin = 1

2
fT(ATCA)−1f when w∗ = CAu∗.

So u∗ = K−1f and w∗ = CAu∗ give the saddle point (w∗, u∗) of L. This is where
Emin = −Pmin.

Problem Set 7.1

1 Our model matrix M in (21) has eigenvalues λ1 = 1, λ2 = 2, λ3 = −1:

M =

[
C−1 A
AT 0

]
=




1 0 −1
0 1 1
−1 1 0




The trace 1 + 1 + 0 down the diagonal of M equals the sum of λ’s. Check that
det M = product of λ’s. Find eigenvectors x1, x2, x3 of unit length for those
eigenvalues 1, 2,−1. The eigenvectors are orthogonal!
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2 The quadratic part of the Lagrangian L(w1, w2, u) comes directly from M :

1

2

[
w1 w2 u

]



1 0 −1
0 1 1
−1 1 0







w1

w2

u


 =

1

2

(
w2

1
+ w2

2
− 2uw1 + 2uw2

)
.

Put the unit eigenvectors x1, x2, x3 inside the squares and λ = 1, 2,−1 outside:

w2

1
+ w2

2
− 2uw1 + 2uw2 = 1( )2 + 2( )2 − 1( )2 .

The first parentheses contain (1w1−1w2 +0w3)/
√

2 because x1 is (1,−1, 0)/
√

2.
Compared with (22), these squares come from orthogonal eigenvector directions.
We are using A = QΛQT instead of A = LDLT.

3 Weak duality Half of the duality theorem is max−P (u) ≤ min E(w). This is
surprisingly easy to prove. Show that −P (u) is always smaller than E(w), for
every u and w with ATw = f .

−1

2
uTATCAu + uTf ≤ 1

2
wTC−1w whenever ATw = f .

Set f = ATw. Verify that (right side) − (left side) = 1

2
(w − CAu)TC−1(w −

CAu) ≥ 0.

Equality holds and max(−P ) = min(E) when w = CAu. That is equa-
tion (11)!

4 Suppose the lower spring in Figure 7.2 is not fixed at the bottom. A mass at
that end adds a new force balance constraint w2 − f2 = 0. Build the old and
new constraints into the Lagrange function L(w1, w2, u1, u2) to minimize the
energy E1(w1) + E2(w2). Write down four equations like (11a)–(11c): partial
derivatives of L are zero.

5 For spring energies E1 = 1

2
w2

1
/c1 and E2 = 1

2
w2

2
/c2, find A in the block form

[
C−1 A
AT 0

] [
w
u

]
=

[
0
f

]
with w =

[
w1

w2

]
, u =

[
u1

u2

]
, f =

[
f1

f2

]
.

Elimination subtracts ATC times the first block row from the second. With
c1 = c2 = 1, what matrix −ATCA enters the zero block? Solve for u = (u1, u2).

6 Continuing Problem 5 with C = I, write down w = CAu and compute the
energy Emin = 1

2
w2

1
+ 1

2
w2

2
. Verify that its derivatives with respect to f1 and f2

are the Lagrange multipliers u1 and u2 (sensitivity analysis).
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Solutions 7.1

4. The Lagrange function is L = E1(w1)+E2(w2)−u1(w1−w2−f1)−u2(w2−f2).
Its first partial derivatives at the saddle point are

∂L

∂w1

=
dE1

dw
(w1)− u1 = 0

∂L

∂w2

=
dE2

dw
(w2) + u1 − u2 = 0

∂L

∂u1

= −(w1 − w2 − f) = 0

∂L

∂u2

= −(w2 − f2) = 0 .

5.

[
C−1 A
AT 0

]
=




c−1

1
−1 0

c−1

2
1 −1

−1 1
0 −1




With C = I elimination leads to
[
I A
0 −ATA

]
with − ATA = −

[
2 −1
−1 1

]
.

The equation...


