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5.6 Nonlinear Flow and Conservation Laws

Nature is nonlinear. The coefficients in the equation depend on the solution u. In
place of ut = c ux we will study ut + uux = 0 and more generally ut + f(u)x = 0.
These are “conservation laws” and the conserved quantity is the integral of u.

The first part of this book emphasized the balance equation: forces balance and
currents balance. For steady flow this was Kirchhoff’s Current Law: flow in equals

flow out. The net flow was zero. Now the flow is unsteady—the “mass inside” is
changing. So a new ∂/∂t term will enter the conservation law.

There is “flux” through the boundaries. In words, the rate of change of mass
inside a region equals that incoming flux. For an interval [a, b], the incoming
flux is the difference in fluxes at the endpoints a and b:

Integral form
d

dt

∫ b

a

u(x, t) dx = f(u(a, t)) − f(u(b, t)) . (1)

In applications, u can be a density (of cars along a highway). The integral of u gives
the mass (number of cars) between a and b. This number changes with time, as cars
flow in at point a and out at point b. The flux is density u times velocity v.

The integral form is fundamental. We can get a differential form by allowing b to
approach a. Suppose b − a = ∆x. If u(x, t) is a smooth function, its integral over a
distance ∆x will have leading term ∆x u(a, t). So if we divide equation (1) by ∆x,
the limit as ∆x approaches zero is ∂u/∂t = −∂f(u)/∂x:

Differential form
∂u

∂t
+

∂

∂x
f(u) =

∂u

∂t
+ f ′(u)

∂u

∂x
= 0 (2)

When f(u) = density u times velocity v(u), we can solve this single conservation
law. For traffic flow, the velocity v(u) can be measured (it will decrease as density
increases). In gas dynamics there are also conservation laws for momentum and
energy. The velocity v becomes another unknown, along with the pressure p. The
Euler equations for gas dynamics in one space dimension include two additional
equations:

Conservation of momentum
∂

∂t
(uv) +

∂

∂x
(uv2 + p) = 0 (3)

Conservation of energy
∂

∂t
(E) +

∂

∂x
(Ev + Ep) = 0 . (4)

Systems of conservation laws are more complicated, but our scalar equation (2) al-
ready has the possibility of shocks. A shock is a discontinuity in the solution u(x, t),
where the differential form breaks down and we need the integral form (1).
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The other outstanding example, together with traffic flow, is Burger’s equation,
for u = velocity. The flux f(u) is 1

2
u2. The “inviscid” form has no uxx:

Burger’s equation
∂u

∂t
+

∂

∂x

(

u2

2

)

=
∂u

∂t
+ u

∂u

∂x
= 0 .

When both the density and velocity are unknowns, these examples combine into
conservation of mass and conservation of momentum. Typically we change density to
ρ. For small disturbances of a uniform density ρ0, we could linearize the conservation
laws and reach the wave equation (Problem ). But the Euler and Navier-Stokes
equations are truly nonlinear, and we begin the task of solving them.

We will approach conservation laws (and these examples) in three ways:

1. By following characteristics until trouble arrives: they separate or collide

2. By a special formula ( )

3. By finite difference and finite volume methods, which are the practical choice.

Characteristics

The one-way wave equation ut = c ux is solved by u(x, t) = u(x + ct, 0). Every initial
value u0 is carried along a characteristic line x + ct = x0. Those lines are parallel
when the velocity c is a constant.

The conservation law ut = +u ux = 0 will be solved by u(x, t) = u(x − ut, 0).
Every initial value u0 = u(x0, 0) is carried along a characteristic line x − u0t = x0.
Those lines are not parallel because their slopes depend on the initial value u0.

Notice that the formula u(x, t) = u(x − ut, 0) involves u on both sides. It gives
the solution “implicitly.” If the initial function is u(x, 0) = 1 − x, for example, the
formula must be solved for u:

u = 1 − (x − ut) gives (1 − t)u = 1 − x and u =
1 − x

1 − t
. (5)

This does solve Burger’s equation, since the time derivative ut = (1 − x)/(1 − t)2 is
equal to −uux. The characteristic lines (with different slopes) can meet. This is an
extreme example, where all characteristics meet at the same point:

x − u0t = x0 or x − (1 − x0)t = x0 which goes through x = 1, t = 1 (6)

You see how the solution u = (1− x)/(1− t) becomes 0/0 at that point x = 1, t = 1.
Beyond their meeting point, the characteristics cannot completely decide u(x, t).

A more fundamental example is the Riemann problem, which starts from two
constant values u = A and u = B. Everything depends on whether A > B or A < B.
On the left side of Figure 5.13, with A > B, the characteristics meet. On the right
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side, with A < B, the characteristics separate. Both cases present a new (nonlinear)
problem, when we don’t have a single characteristic that is safely carrying the correct
initial value to the point. This Riemann problem has two characteristics through the
point, or none:

Shock Characteristics collide (light goes red: speed drops from 60 to 0)
Fan Characteristics separate (light goes green: speed up from 0 to 60)

The problem is how to connect u = 60 to u = 0, when the characteristics don’t give
the answer. A shock will be sharp breaking (drivers only see the car ahead in this
model). A fan will be gradual acceleration.

TO DO...

Figure 5.13: A shock when characteristics collide, a fan when they separate.

For the conservation law ut + f(u)x = 0, the characteristics are x − f ′(u0)t = x0.
That line has the right slope to carry the constant value u = u0:

d

dt
u(x0 + St, t) = S

∂u

∂x
+

∂u

∂t
= 0 when S = f ′(u) . (7)

The solution until trouble arrives is u(x, t) = u(x − f ′(u)t, 0).

Shocks

After trouble arrives, it will be the integral form that guides the choice of the correct
solution u. If there is a jump in u (a shock), that integral from tells where the jump
must occur. Suppose u has different values uL and uR at points xL and xR on the
left and right sides of the shock:

Integral form
d

dt

∫ xR

xL

u dx + f(uR) − f(uL) = 0 . (8)

If the position of the shock is x = X(t), we take xL and xR very close to X. The
values of u(x, t) inside the integral are close to the constants uL and uR:

d

dt

[

(x − xL) uL + (xR − X) uR

]

+ f(uR) − f(uL) ≈ 0 .

This gives the speed s = dX/dt of the shock curve:

Jump condition s uL − s uR + f(uR) − f(uL) = 0

shock speed =
f(uR) − f(uL)

uR − uL

=
[ f ]

[ u ]
. (9)
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For the Riemann problem, the left and right values uL and uR will be constants A
and B. The shock speed s is the ratio between the jump [ f ] = f(B) − f(A) and
the jump [ u ] = B − A. Since this ration gives a constant slope, the shock line is
straight. For other problems, the characteristics are carrying different values of u into
the shock. So the shock speed s is not constant and the shock lines is curved.

The shock gives the solution when characteristics collide. With f(u) = 1
2
u2 in

Burger’s equation, the shock speed is halfway between uL and uR:

Burger’s equation Shock speed s =
1

2

u2
R − u2

L

uR − uL
=

1

2
(uR + uL) . (10)

The Riemann problem has uL = A and uR = B, and s is their average. Figure 5.14
shows how the integral form of Burger’s equation is solved by the right placement of
the shock.

Fans

You might expect a similar picture (just flipped) when A < B. Wrong. The integral
form is still satisfied, but it is also satisfied by a fan. The choice between shock and
fan is made by the “entropy condition” that as t increases, characteristics must go

into the shock. The wave speed is faster than the shock speed on the left, and slower
on the right:

Entropy condition f ′(u) > s > f ′(uR) (11)

Since Burger’s equation has f ′(u) = u, it only has shocks when uL is larger than uR.
In the Riemann problem that means A > B. In the opposite case, the smaller value
uL = A has to be connected to uR = B by the fan in Figure 5.14:

Fan (or rarefaction) u =
x

t
for At < x < Bt . (12)

use fig 6.28 p. 592 of IAM (reverse left and right figs)

Figure 5.14: Characteristics collide in a shock and separate in a fan.

Notice especially that in the traffic flow problem, the velocity v(u) decreases as
the density u increases. A good model is linear between v = vmax at zero density
and v = 0 at maximum density. Then the flux f(u) = u v(u) is a downward parabola
(concave instead of Burger’s convex u2/2):

Traffic speed
and flux

v(u) = vmax

(

1 − u

umax

)

and f(u) = vmax

(

u − u2

umax

)

. (13)

Typical values for a single lane of traffic show a maximum flux of f = 1600 vehicles
per hour, when the density is u = 80 vehicles per mile. This maximum flow rate
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is attained when the velocity f/u is v = 20 miles per hour! Small comfort at that
speed, to know that other cars are getting somewhere too.

Problems and compute the solution when a light goes red (shock trav-
els backward) and when a light goes green (fan moves forward). Please look at the
figures, to see how the vehicle trajectories are entirely different form the characteris-
tics.

A driver keeps adjusting the density to stay safely behind the car in front. (Hitting
the car would give u < 0.) We all recognize the frustration of braking and accelerating
from a series of shocks and fans. This traffic crawl happens when the green light is
too short for the shock to make it through.

A Solution Formula for Burger’s Equation

Let me comment on three nonlinear equations. They are useful models, quite special
because each one has an exact solution formula:

Conservation law ut + u ux = 0

Burger’s with viscosity ut + u ux = ν uxx

Korteweg-de Vries ut + u ux = −a uxxx

The conservation law can develop shocks. This won’t happen in the second equation
because the uxx viscosity term prevents it. That term can stay small when the solution
is smooth, but it dominates when a wave is about to break. The profile is steep but
it stays smooth.

As starting function for the conservation law, I will pick a point source: u(x, 0) =
δ(x). We can guess a solution with a shock, and check the jump condition and entropy
condition. Then we find an exact formula when ν uxx is included, by a neat change of
variables that produces ht = ν hxx. When we let ν → 0, the limiting formula solves
the conservation law—and we can check that the following solution is correct.

Solution with u(x, 0) = δ(x) When u(x, 0) jumps upward, we expect a fan.
When it drops we expect a shock. The delta function is an extreme case (very big
jumps up and down, very close together!). So we look for a shock curve x = X(t)
immediately in front of a fan!

Expected solution u(x, t) =
x

t
for 0 ≤ x ≤ X(t); otherwise u = 0. (14)

The total mass at the start is
∫

δ(x) dx = 1. This never changes, and already that
locates the shock position X(t):

Mass at time t =

∫ X

0

x

t
dt =

X2

2t
= 1 so X(t) =

√
2t . (15)



5.6. NONLINEAR FLOW AND CONSERVATION LAWS c©2006 Gilbert Strang

Does the drop in u, from X/t =
√

2t/t to zero, satisfy the jump condition?

Shock speed s =
dX

dt
=

√
2

2
√

t
equals

Jump [ u2/2 ]

Jump [ u ]
=

X2/2t2

X/t
=

√
2t

2t
.

The entropy condition uL > s > uR = 0 is also satisfied, and the solution ( ) looks
good. It is good, but because of the delta function we check it another way.

Begin with ut + u ux = ν uxx, and solve that equation exactly. If u(x) is ∂U/∂x,
then integrating our equation gives Ut + 1

2
U2

x = ν Uxx. The initial value U0(x) is now
a step function. Then the great change of variables U = −2ν log h produces the heat
equation ht = ν hxx (Problem ). The initial value becomes h(x, 0) = e−U0(x)/2ν .
Section 5.4 found the solution to the heat equation ut = uxx from any starting function
h(x, 0) and we just change t to νt:

U(x, t) = −2ν log h(x, t) = −2ν log

[

1√
4πνt

∫

∞

−∞

e−U0(y)/2νe−(x−y)2/4νt dy

]

. (16)

It doesn’t look easy to let ν → 0, but it can be done. That exponential has the
form e−B(x,y)/2ν . This is largest when B is smallest. An asymptotic method called
“steepest descent” shows that as ν → 0, the bracketed quantity in (16) approaches
c e−B−

min
/2ν . Taking its logarithm and multiplying by −2ν, (16) becomes U = Bmin

in the limit:

lim
ν→0

U(x, t) = Bmin = min
y

[

U0(y) +
1

2t
(x − y)2

]

. (17)

This is the solution formula for Ut + 1
2
U2

x = 0. Its derivative u = Ux solves the
conservation law ut + u ux = 0. By including the viscosity ν uxx with ν → 0, we are
finding the u(x, t) that satisfies the jump condition and the entropy condition.

Example Starting from u(x, 0) = δ(x), its integral U0 is a step function. The minimum
of B is either at y = x or at y = 0. Check each case:

U(t, x) = Bmin = miny

[

0 (y ≤ 0)
1 (y > 0)

+
(x − y)2

2t

]

=











0 for x ≤ 0

x2/2t for 0 ≤ x ≤
√

2t

1 for x ≥
√

2t

The result u = dU/dx is 0 or x/t or 0. This agrees with our guess in equation ( )—a
fan rising from 0 and a shock back to 0 at x =

√
2t.


