
18.085: Summer 2016 Due: 3 August 2016 (in class)

Problem Set 8 - Solution

Jonasz Słomka

Unless otherwise specified, you may use MATLAB to assist with computations. Please
provide a print-out of the code used and its output with your assignment.

1. More on relation between Fourier series and Discrete Fourier Transform (DFT).

Let f(x) be a periodic function of period 2π. We can express it as a Fourier series

f(x) =
∞∑

k=−∞

cke
ikx. (1)

Suppose we want to approximate f(x) by keeping only the first n lowest frequency
amplitudes

f(x) ≈
n∑

k=−n

cke
ikx. (2)

The number of terms on the rhs is N = 2n+ 1. Let’s sample f(x) at points

xj =
2π

N
j j = −n, . . . , 0, . . . n, (3)

that are uniformly distributed over the interval (−π, π), and include the origin.

If we denote the corresponding vector of samples by fj = f(xj), then, at point xj, the
approximation (2) gives

fj =
n∑

k=−n

ckω
kj, (4)

where ω = e−i
2π
N . Similarly, we can approximate the exact expression for the Fourier

coefficient ck by the finite sum

ck =
1

2π

∫ π

−π
f(x)e−ikxdx ≈ 1

2π

n∑
j=−n

fjω
kj∆x, k = −n, . . . , 0, . . . n. (5)

Since ∆x = 2π
N
, this is

ck =
1

N

n∑
j=−n

fjω
kj. (6)

We can see that Eq. (6) looks almost like the DFT and Eq. (4) is almost the inverse
DFT. What is different is that the zero frequency mode is in the middle, rather than
on the left. We need two steps to exactly recover the usual DFT.

18.085 PSET8 - Solution Page 1 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

First, note that fj and ck are labelled from −n to n while in the definition of DFT we
have labels from 0 to N . Let’s relabel: f̃k = fk−n and c̃k = ck−n. If we also change the
summation to run from 0 to N , we get

f̃j =
N−1∑
k=0

c̃kω
(k−n)(j−n), c̃k =

1

N

N−1∑
j=0

f̃jω
(k−n)(j−n). (7)

We shift the above expressions by n

f̃j+n =
N−1∑
k=0

c̃kω
(k−n)j, c̃k+n =

1

N

N−1∑
j=0

f̃jω
k(j−n). (8)

A small rearrangement gives

ωnj f̃j+n =
N−1∑
k=0

c̃kω
kj, ωknc̃k+n =

1

N

N−1∑
j=0

f̃jω
kj. (9)

If you remember that, for DFT and its inverse, factor like ωkn in front of c̃k+n comes
from the shift of f̃j by n, f̃j → f̃j−n, then you realize that the above formulae are exactly
inverse DFT and DFT, respectively, just with input and output shifted. MATLAB
has built in commands to perform these shifts for you. All you need is fftshift()
and ifftshift() on top of the usual fft() (DFT) and ifft() (inverse DFT). The
transforms are

f = fftshift(ifft(ifftshift(N ∗ c))), (10)
c = fftshift(fft(ifftshift(f/N))).

(a) In Problem set 6 you showed that the periodic function f(x) defined by f(x) = x
on (−π, π) has Fourier series given by

f(x) = −2
∑
k=1

(−1)k

k
sin(kt). (11)

Convert f(x) into the complex form f =
∑∞

k=−∞ cke
ikx (find ck).

Answer: Since sin(kt) = eikt−e−ikt
2i

, we get

c0 = 0, (12)

ck = i
(−1)k

k
, k > 0,

ck = −c−k, k < 0.

(b) Sample f(x) at the grid points defined by Eq. (3). Do so forN = 2n+1 equal to 33,
35 and 37. Convert the samples to the coefficients using c = fftshift(fft(ifftshift(f/N))).
Plot the difference between these coefficients and the coefficients of the Fourier

18.085 PSET8 - Solution Page 2 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

series from (a). Use log-log scale. Comment on the behaviour of the difference
for the three values of N .
Answer

Evaluating c = fftshift(fft(ifftshift(f/N))) is like approximating the inte-
grals ck = 1

2π

∫ π
−π f(x)e−inxdx. The higher the discretization size, the better the

approximation.

(c) In Problem set 7 you showed that the periodic function g(x) defined by g(x) = |x|
on (−π, π) has Fourier series given by

g(x) =
π

2
− 4

π

∞∑
n=1,3,5,···

1

n2
cos(nx). (13)

Repeat (a) and (b) for g(x).
Answer: Since cos(kt) = eikt+e−ikt

2
, we get

c0 =
π

2
, (14)

ck = − 2

π

1

k2
, k > 0, k odd,

ck = c−k, k < 0, k odd.

18.085 PSET8 - Solution Page 3 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

18.085 PSET8 - Solution Page 4 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

2. (Simplified) JPEG compression.

Download the following two pictures of the MIT dome (MITdome.jpg and MITdome2.jpg)
from the course webpage.

You will perform image compression using the two-dimensional variants of the Discrete
Cosine Transform (DCT) and the Discrete Sine Transform (DST).

(a) In MATLAB, load the first file MITdome.jpg, convert it to the grayscale and
display it, using

RGB = imread(′MITdome.jpg′); (15)
I = double(rgb2gray(RGB));

figure, imshow(I, [0255])

Answer:

(b) Apply the DCT to compute the frequency spectrum of the grayscale image. Dis-
play, on the log scale, the normalized magnitude of the coefficients. Use

J = dct2(I); (16)
figure, imshow(log10(abs(J)/max(abs(J(:)))), []), colormap(jet), colorbar

18.085 PSET8 - Solution Page 5 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

Answer:

(c) Perform the compression J → Jcompressed by keeping only the largest ampli-
tudes that contain 99.9% of the image energy. This should be very similar to the
Speech Signal Compression Example we did in class, the difference is that now
the signal is a matrix, rather than a vector. To convert a matrix into a vector by,
stacking its columns on top of each other, simply put vecJ = J(:). To reshape the
vector vecJ back into a matrix, use reshape(vecJ, m, n), where m, n are the dimen-
sions of the matrix [m, n] = size(J). The image energy is defined as a sum over the
squares of the Fourier amplitudes. In MATLAB, this is EnergyJ = norm(J(:))∧2.
Calculate the percentage of nonzero amplitudes left after the compression.
Answer:

After the compression, there is 34.0469% nonzero amplitudes left.

(d) Once you compressed the image in the frequency domain, go back to the physical
domain by inverting the DCT

Icompressed = idct2(Jcompressed); (17)

and display the image

figure, imshow(Icompressed, [0255]) (18)

Answer:

18.085 PSET8 - Solution Page 6 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

(e) Show the (10 times) magnified difference between the original and the compressed
images

figure, imshow(10 ∗ abs(I− Icompressed), [0255]) (19)

Where is the discrepancy the largest? In other words, which features of the
original image are badly captured after the compression?
Answer:

Sharp edges suffer most from the compression. This is a direct manifestation of
the Gibbs phenomenon in practice.

(f) Repeat the above analysis for two other compression thresholds: keep 99% and
98% of the image energy. In each case, record the percentage of nonzero ampli-
tudes left after the compression.
Answer:
Let’s do the 99% threshold first.

I needed only 5.5781% of the amplitudes.

18.085 PSET8 - Solution Page 7 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

Now comes the 98% threshold.

I needed as little as 1.5432% of the amplitudes and the resolution is still not that
bad.

(g) Repeat the analysis by using DST rather than DCT, still for the same image,
MITdome.jpg. There is no dst2() command in MATLAB. You will have to use
the one-dimensional version dst() twice, first on columns, then on rows. This is
done by

J2 = dst(dst(I).′).′; (20)

Similarly, to apply the (2D) inverse of DST use

J2 = idst(idst(I).′).′; (21)

Again, for the three thresholds, record the percentage of nonzero amplitudes left
after the compression. How does it compare with the DCT case?
Answer:

Using DST I got for the three thresholds: 34.2086%, 5.7904% and 1.7463% nonzero
amplitudes. This is only marginally worse than using DCT.

18.085 PSET8 - Solution Page 8 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

(h) Now repeat the analysis (for both DCT and DST) with the other image, MITdome2.jpg.
Which of the two (DCT or DST) gives a more efficient compression? Can you
explain why?
Answer: For MITdome2.jpg, the amplitudes look like (DCT left, DST right):

DCT DST
99.9% 22.3860% 23.2773%
99% 0.7434% 1.6629%
98% 0.0929% 0.4534%

For the high resolution (99.9%) there is still little difference. As we decrease the
desired resolution, we see that DCT beats DST by a factor of two in the 99% case,
and by a factor of five in the 98% case. This is because DST is wasting energy on
resolving the boundaries. Odd flipping inherent in the definition of DST creates
sharp jumps if the four edges of the picture are significantly different (from zero).
This is the case for MITdome2.jpg and not so much for MITdome.jpg where the
two trees around the dome make the picture almost periodic in the horizontal
direction.
For the 99% case let’s compare the DCT and DST.
DCT:

18.085 PSET8 - Solution Page 9 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

DST:

It is now clear that DST does badly not only at the contours of the tree and the
dome (same as DCT), but also around the four edges of the picture itself.

3. Fast multiplication through convolution.

(a) Given two vectors a and b with components ai and bi, respectively, the discrete
convolution of a and b is a third vector a ∗ b with components

(a ∗ b)n =
∑
i+j=n

aibj. (22)

The sum on the rhs goes over all pairs of indices i and j such that i + j = n. If
a has na components, and b has nb components, show that a ∗ b has na + nb − 1
components.
Answer: Think about sliding the vector b against a and the resulting overlap.
Sliding the right end of (flipped) b against a gives na overlaps. Sliding the left end

18.085 PSET8 - Solution Page 10 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

against a takes the length of b minus one step (after nb steps a and b are already
stacked back-to-back so no overlap), so in total we have na + nb − 1 overlaps.

(b) Consider two polynomials

p(x) = a0 + a1x+ a2x
2, q(x) = b0 + b1x+ b2x

2 + b3x
3. (23)

Find the polynomial r(x) = p(x)q(x). Show that the coefficients cn of r(x) are
the discrete convolution of the coefficients ai and bi.
Answer: Multiply out the two polynomials and collect terms of the same power

p(x)q(x) = (a0 + a1x+ a2x
2)(b0 + b1x+ b2x

2 + b3x
3) (24)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2

+(a0b3 + a1b2 + a2b1)x
3 + (a1b3 + a2b2)x

4 + a2b3x
5.

On the other hand, let’s convolve a = [a0, a1, a2] with b = [b0, b1, b2, b3]. From (a),
we know that a ∗ b has 6 entries. From the definition of convolution, we get

(a ∗ b)0 =
∑
i+j=0

aibj = a0b0, (25)

(a ∗ b)1 =
∑
i+j=1

aibj = a0b1 + a1b0,

(a ∗ b)2 =
∑
i+j=2

aibj = a0b2 + a1b1 + a2b0,

(a ∗ b)3 =
∑
i+j=3

aibj = a0b3 + a1b2 + a2b1,

(a ∗ b)4 =
∑
i+j=4

aibj = a1b3 + a2b2,

(a ∗ b)5 =
∑
i+j=5

aibj = a2b3.

(c) From part (b) it should be intuitively clear that, in the general case

p(x) =
P∑
i=0

aix
i, q(x) =

Q∑
j=0

bjx
i, (26)

the coefficients of the polynomial r(x) = p(x)q(x) are given by a ∗ b. In other
words, multiplying two polynomials means convolving their coefficients. We have
seen in class that fft() can be used to cyclically convolve two vectors. Two avoid
the cyclic property, we must add enough zeros at the end of a and b (zero-padding)
so that their length is at least (P + 1) + (Q + 1) − 1 = P + Q + 1. Denote the
extended vectors by ã and b̃. Then the the following single line in MATLAB
produces a ∗ b

ifft(fft(~a). ∗ fft(~b)). (27)

18.085 PSET8 - Solution Page 11 of 12

18.085: Summer 2016 Due: 3 August 2016 (in class)

Now suppose you want to multiply two really big numbers, one with 100 and the
other with 400 digits. If you want to use Long Multiplication (as in elementary
school), you would need about 100 × 400 = 40000 operations. Explain how you
can use the above polynomial multiplication-convolution relation and fft() to
reduce this number. With fft(), how many operations do you roughly need?
Answer: Any number with a finite number of digits in the decimal representation
can be thought of as an evaluation of the polynomial p(x) = a0 +a1x+a2x

2 + . . . ,
where ai are the digits of the representation at x = 10. For example, to the
number 5031, we associate the polynomial

p(x) = 1 + 3x+ 5x3. (28)

Then, of course, 5031 = p(10). Thus, to multiply two large numbers, with the
number of digits, say na and nb, we can form the two corresponding polynomials
(of order na− 1 and nb− 1, respectively). Instead of multiplying the polynomials
directly, we can use the zero padding technique and the formula (27). In total,
after zero padding, we have three FFTs (of size N = na + nb − 1) and one multi-
plication (of size N). The number of operations is roughly (FFT has complexity
n log n)

3N logN +N ≈ 3N logN. (29)

This is much slower growth than nanb required when doing the Long Multiplica-
tion. For na = 400 and nb = 100, the number of operations is around 9000.

18.085 PSET8 - Solution Page 12 of 12

