18.085: Summer 2015

Problem Set 4

Unless otherwise specified, you may use MATLAB to assist with computations. Please provide a print-out of the code used and its output with your assignment.

- 1. Positive definiteness.
 - (a) Without doing any calculations, determine whether the following matrices are positive definite (and explain your reasoning):

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} -1 & 2 & 4 \\ 2 & 8 & -9 \\ 4 & -9 & 3 \end{bmatrix}.$$

- (b) Show that if a $n \times n$ symmetric matrix B is not full rank, it cannot be positive definite.
- (c) If all eigenvalues of a $n \times n$ symmetric matrix C are positive, show that $u^{\top}Cu > 0$ for every $u \neq 0$.
- (d) Show that if the symmetric $n \times n$ matrices D_1 and D_2 are positive definite, then so is $D_1 + D_2$.
- 2. SVD. **This problem is to be done by hand.** Find the singular value decomposition of the following matrices:

3. Error. Consider the matrix:

$$A = \begin{bmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{bmatrix}.$$

- (a) Set b1 = [1.2969; 0.2161] and compute $x = A \setminus b1$ in MATLAB.
- (b) Repeat the process but with a vector **b2** obtained from **b1** by rounding each value to three decimal places. Why do the two answers differ by so much?
- (c) Now compute $x = B \setminus b1$ where B is obtained from A by rounding each value to three decimal places. As you will see, our solution is also sensitive to small changes in the matrix A.

18.085 PSET4 Page 1 of 2

- 4. Condition number. If the condition number of an invertible $n \times n$ matrix A is κ , find the condition number of the following matrices in terms of κ :
 - (a) $A^{\top}A$
 - (b) A^{-1}
 - (c) What is the value of κ if A is an orthogonal matrix?
 - (d) What is the smallest possible value for κ ? Construct a 3×3 matrix with this minimum condition number.
- 5. Initial Value Problem. (Not to be handed in). Consider the following initial value problem for x(t):

$$\frac{dx}{dt} = -x^2$$

with initial condition x(0) = 1.

- (a) Find the exact solution for x(t). (Hint: Separate variables and integrate both sides). Compute the exact value of x(1).
- (b) We would like to setup this problem to be solved numerically with a time step Δt . Recall that $x_n = x(n\Delta t)$. Find an explicit formula for x_{n+1} as a function of x_n , Δt , and λ using a Forward Euler method.
- (c) Implement this explicit numerical method in MATLAB and find the approximation of x(1) using $\Delta t = \frac{1}{10}$. Calculate the difference between the exact value and this approximate value.
- (d) If we reduce the time step from $\Delta t = \frac{1}{10}$ to $\Delta t = \frac{1}{100}$, how much you expect the error to be reduced?
- (e) Find the approximation of x(1) with $\Delta t = \frac{1}{100}$. Calculate the difference between the exact value and this approximate value. By what factor is the error at x(1) reduced by switching from $\Delta t = \frac{1}{10}$ to $\Delta t = \frac{1}{100}$?
- (f) Derive an explicit formula for x_{n+1} as a function of x_n , Δt , and λ using a:
 - i. Backward Euler method,
 - ii. Trapezoidal Rule method.

18.085 PSET4 Page 2 of 2