18.085 Exam 2 November 9, 2011 Professor Strang
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1. (a) (5 points) A truss is in the shape of an X with 45° angles and 2 fixed nodes at the

bottom. Based on the number m of bars and n of unknown displacements, how many

independent solutions do you expect to Au = 0?
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(b) (10 points) You can answer without writing down the matrix A. Give the components
wil, uy,...,uf for a full set of independent solutions of Au = 0. DRAW THESE
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(¢) (10 points) What is row 1 of the matrix A fcorresponding to upper left bar 1)?
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2. (a) (5 points) Explain what condition the components (v1,v2) = (8u/0z,u/dy) of a
gradient field must satisfy, and give the reason why.
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(b) (10 points) Find a potential u(z,y) if v(z,y) = (1,2) = constant velocity.
Using this u(z,y), find a stream function s(z,y) so that the u = 9 e lé

Cauchy-Riemann equations are satisfied:
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(c) (5 points) Draw a few equipotential curves u(z,y) = constant and a few streamlines

s(z,y) = constant.
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3. (a) (5 points) In class I never checked that (z + iy)" solves Laplace’s equation. Please

substitute it into the equation to confirm. [Then its real and imaginary parts also
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€ (k) e S {at 5)

Y ( W=
e - an(rs iy Son = EnCned(rtiy)

&a (b) (10 points) Find the real and imaginary paZ u and s of the function 1/z = 1/(z+1y).

Give the answers u and s in x,y coordinates and also in polar r, § coordinates.
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(c) (10 points) Solve Laplace’s equation outside the unit circle r? = 22 +¢% = 1 if the

boundary condition is u = ug = y on the circle.
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4. (a) (10 points) Find the weak form of the 1-D equation
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with du/dz(0) = 0 and u(1) = 0. You must tell me what boundary conditions u(z)
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( and v(z) are required to sa.t1sfy in the weak form.
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(b) (10 points) Suppose h = % and we use two continuous piecewise hnear functions

(hat-type functions) ¢; and ¢ :

trial functions ¢; = test functions V; = hat-type functions =1 at one node.

¢ Draw these functions. Find the 2 by 2 stiffness matrix X and the 2-component
{

vector F. Qﬁj\ [‘l s U\z ) Q]

(¢) (10 points) Solve KU = F to ﬁnd the ﬁmte element solution U = (U, Us) at the
nodes. DRAW the graph of this solution U(z) = Ui¢1 + Uags.

p.s. This is the exa,ctly correct solutlon u(z) to the differential equation.
(Always lucky in 18.085.)
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