Your PRINTED name is: SOLUTIONS Grading

2 3

1

1) **(30 pts.)** (a) Suppose f(x) is a periodic function:

$$f(x) = \begin{cases} 0 & \text{for } -\pi < x < 0 \\ e^{-x} & \text{for } 0 \le x \le \pi \\ f(x + 2\pi n) & \text{for every integer } n \end{cases}$$

Find the coefficients c_k in the complex Fourier series $f(x) = \sum c_k e^{ikx}$. What is c_0 ? What is $\sum_{-\infty}^{\infty} |c_k|^2$?

- (b) Draw a graph of f(x) from -2π to 2π . Also draw a careful graph of df/dx. How quickly do the coefficients of f(x) decay as $k \to \infty$ and why?
- (c) Find the Fourier coefficients d_k of df/dx. Do they approach a constant (or what pattern do they approach) as $k \to \infty$? Explain the pattern from your graphs.

Solution.

(a)
$$c_k = \frac{1}{2\pi} \int_0^{\pi} e^{-x} e^{-ikx} dx = \frac{1}{2\pi} \frac{e^{-(1+ik)x}}{-(1+ik)} \Big|_0^{\pi} = \frac{1}{2\pi} \frac{1 - e^{-(1+ik)\pi}}{1 + ik} = \frac{1 - (-1)^k e^{-\pi}}{2\pi (1+ik)}$$

 $c_0 = \frac{1 - e^{-\pi}}{2\pi} \sum |c_k|^2 = \frac{1}{2\pi} \int_0^{\pi} (e^{-x})^2 dx = \frac{1 - e^{-2\pi}}{4\pi}$

(b) The graph of f(x) includes a jump of 1 at x=0 and a drop of $e^{-\pi}$ at $x=\pi$. So df/dx includes $\delta(x)-e^{-\pi}\delta(x-\pi)$. (Both function have e^{-x} from 0 to π .)

The coefficients of f(x) decay like 1/k because of the two jumps.

(c) The coefficients of df/dx are

$$d_k = ik c_k = \frac{ik}{2\pi(1+ik)} (1 + (-1)^k e^{-\pi}).$$

As $k \to \infty$ they do not approach a constant (which would be 1, coming from $\delta(x)$). Instead the limiting pattern alternates between $1 + e^{-\pi}$ and $1 - e^{-\pi}$, because f(x) has two jumps.

- 2) (33 pts.) (a) Can you complete this 4-step MATLAB code to compute the cyclic convolution $f \otimes g = h$? I suggest flat, ghat, hhat for their transforms.
 - 1. fhat = fft(f)
 - 2. ghat = fft(g)
 - 3. hhat = fhat .* ghat
 - 4. h = ifft(hhat)

(It is equally possible to start with the inverse discrete transform ifft. The only difference will be a factor of N somewhere, which I forgive! If you don't know MATLAB notation for commands 2, 3, 4 you can use words. MATLAB's fft(f) and ifft(f) automatically determine the length of f.)

- (b) Suppose each of your quiz grades is a random variable (don't know how I thought of this). The probability of grade j on each quiz (j = 0, ..., 100) is p_j . The "generating function" for that quiz is $P(z) = \sum p_j z^j$. What is the probability s_k that the sum of your grades on 2 quizzes is k? Give a nice formula for $S(z) = \sum s_k z^k$.
- (c) The chance of grade j = (70, 80, 90, 100) on one quiz is p = (.3, .4, .2, .1). What is the expected value (mean m) for the grade on that quiz? Show that this quiz average m agrees with dP/dz at z = 1. What are the probabilities s_k for the sum of two grades? Give numbers or a MATLAB code for the s_k .

Solution.

(b) The two grades are i and j with probability $p_i p_j$. Looking at all pairs that add to k,

$$s_k = \sum_{i+j=k} p_i p_j = \sum p_i p_{k-i}$$
 and $s = p * p$.

The convolution rule (multiplying polynomials is convolution of coefficients) says that $S(z) = (P(z))^2$.

I should have worded this problem more clearly.

(c) The expected value (the mean m) is

$$(.3)(70) + (.4)(80) + (.2)(90) + (.1)(100) = 81.$$

This is the derivative at z = 1 of

$$P(z) = (.3)z^{70} + (.4)z^{80} + (.2)z^{90} + (.1)z^{100}$$

For the probabilities s_k , part (b) says that we have to convolve p * p. Noncyclic convolution is conv(p,p) — or pad p by extra zeros and use the cyclic code in part (a) — or compute $(3421)^2$ without carrying:

3

4 2 1

3) (37 pts.) (a) The hat function H(x) = 1 - |x| for $-1 \le x \le 1$ has height 1 and area 1 and integral transform $\widehat{H}(k) = (2 - 2\cos k)/k^2$. Find the transform $\widehat{R}(k)$ of the roof function R(x):

$$R(x) = \mathbf{box} + \mathbf{hat} = 2 - |x|$$
 for $-1 \le x \le 1$, 0 else.

- (b) What is the value of $\widehat{R}(k)$ at k=0 and how does this connect to the graph of the roof?
- (c) Suppose R(x) is the response of a sensor to a point source $\delta(x)$ at x = 0. The sensor is shift-invariant (shifted response when source is shifted). The output F from a distributed source U(x) is the convolution F = R * U. Describe how to find U(x) if you know F(x).
- (d) There could be a difficulty with your solution method in part (c). That would arise if _____ = 0. For 1 point, does this difficulty appear in this example?

Solution.

(a) The box on [-1, 1] has transform $(e^{ik} - e^{-ik})/ik = 2\sin k/k$. Then $R = \mathbf{box} + \mathbf{hat}$ has

$$\widehat{R} = \widehat{\mathbf{box}} + \widehat{\mathbf{hat}} = \frac{2\sin k}{k} + \frac{2 - 2\cos k}{k^2}$$

Note: The 1/k decay rate comes from the jumps in the box function. The $1/k^2$ terms come from corners in the hat.

- (b) $\widehat{R}(0) = 3$ because the area under R(x) is $\int_{-1}^{1} R(x) e^{0x} dx = 3$.
- (c) Take transforms of F = R * U to find $\widehat{F} = \widehat{R} \widehat{U}$. Then $\widehat{U} = \widehat{F}/\widehat{R}$. Invert this transform to find U(x).
- (d) There is a difficulty if $\widehat{R}(k) = 0$ for any frequencies k. This does appear in the example when $k = 2\pi, 4\pi, \dots$