Your PRINTED name is:

Grading

3

A point load at $x = \frac{1}{3}$ hangs at the same point where c(x) changes from c=1 (for $0 < x < \frac{1}{3}$) to c=2 (for $\frac{1}{3} < x < 1$). Both ends are FIXED.

(a) Solve for u(x) and w(x) = c(x) u'(x):

$$-\frac{d}{dx}\left(c(x)\frac{du}{dx}\right) = \delta\left(x - \frac{1}{3}\right) \quad \text{with} \quad u(0) = u(1) = 0.$$

- (b) Draw the graphs of u(x) and w(x).
- (c) Divide the hanging bar into intervals of length $h = \frac{1}{6}$ (then c(x) changes from 1 to 2 at x=2h). There are unknowns $U=(u_1,\ldots,u_5)$ at the meshpoints. Write down a matrix approximation $\boldsymbol{K}\boldsymbol{U} = \boldsymbol{F}$ to the equation above. Take differences of differences (each difference over an interval of length h).

2) (33 pts.) This truss doesn't look safe to me. Those angles are 45° . The matrix A will be 6 by 8 when the displacements are fixed to zero at the bottom.

- (a) How many independent solutions to e=Au=0? Draw these mechanisms.
- (b) Write numerical vectors $u=(u_1^{\rm H},u_1^{\rm V},\ldots,u_4^{\rm H},u_4^{\rm V})$ that solve Au=0 to give those mechanisms in part (a).
- (c) What is the first row of $A^{T}A$ (asking about $A^{T}A$!) if unknowns are taken in that usual order used in part (b)?

- 3) (33 pts.) (a) Is the vector field $w(x,y) = (x^2 y^2, 2xy)$ equal to the gradient of any function u(x)? What is the divergence of w? If u(x,y) and s(x,y) are a Cauchy-Riemann pair, show that w(x,y) = (s(x,y), u(x,y)) will be a gradient field and also have divergence zero.
 - (b) Take real and imaginary parts of $f(x+iy)=(x+iy+\frac{1}{x+iy})$ to find two solutions of Laplace's equation. Write those two solutions also in polar coordinates.
 - (c) Integrate each of the functions $u=1, u=r\cos\theta, u=r^2\cos2\theta$ around the closed circle of radius 1 to find $\int u\,d\theta$. How could this same computation come from the Divergence Theorem?

XXX