Your name is:	Grading	$\frac{1}{2}$
		2. 3.
OPEN BOOK EXAM		4.
Write solutions onto these pages!		
Circles around short answers please!!		

1) (32 pts.) This problem is about the symmetric matrix

$$H = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

- (a) By elimination find the triangular L and diagonal D in $H = LDL^{T}$.
- (b) What is the smallest number q that could replace the corner entry $H_{33} = 1$ and still leave H positive *semi*definite? q =_____
- (c) H comes from the 3-step framework for a hanging line of springs: displacements \xrightarrow{A} elongations \xrightarrow{C} spring forces $\xrightarrow{A^{\mathrm{T}}}$ external force fWhat are the specific matrices A and C in $H = A^{\mathrm{T}}CA$?
- (d) What are the requirements on any m by n matrix A and any symmetric matrix C for $A^{T}CA$ to be positive definite?

х

2) (24 pts.) Suppose we make three measurements b_1, b_2, b_3 at times t_1, t_2, t_3 . They would fit exactly on a straight line b = C + Dt if we could solve

$$C + Dt_1 = b_1$$
$$C + Dt_2 = b_2$$
$$C + Dt_3 = b_3$$

- (a) If b₁, b₂, b₃ are equally reliable what are the equations for the best values C and D? Don't solve the equations—write them in terms of t's and b's (not just some letter A).
- (b) Suppose the errors in b₁, b₂, b₃ are independent with variances σ₁², σ₂², σ₃²
 (covariances = 0 because independent). Find the new equations for the best Ĉ and D̂. Use t's, b's and c_i = 1/σ_i²—by method ① or ②
 - (1) Remember how the covariance matrix Σ (called V in the book) enters the equations
 - (2) Divide the three equations above by $\sigma_1, \sigma_2, \sigma_3$. Then do ordinary least squares because the rescaled errors have variances = 1.
- (c) Suppose $\sigma_1 = 1, \sigma_2 = 1$, but $\sigma_3 \to \infty$ so the third measurement is *(exactly reliable) (totally unreliable)* CROSS OUT ONE.

In this case the best straight line goes through which points?

XX

3) (20 pts.) (a) Suppose $\frac{du}{dx}$ is approximated by a *centered* difference:

$$\frac{du}{dx} \approx \frac{u(x + \Delta x) - u(x - \Delta x)}{2\,\Delta x}$$

With equally spaced points $x = h, 2h, 3h, 4h, 5h = \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$ and zero boundary conditions $u_0 = u_6 = 0$, write down the 3 by 3 centered first difference matrix Δ :

$$(\Delta u)_i = \frac{u_{i+1} - u_{i-1}}{2h}$$

Show that this matrix Δ is *singular* (because 3 is odd) by solving $\Delta u = 0$.

(b) Removing the last row and column of a positive definite matrix K always leaves a positive definite matrix L. Why? Explain using one of the tests for positive definiteness. XXX

- 4) (24 pts.) The equation to solve is $-u'' + u = \delta(x \frac{1}{2})$ with a unit point load at $x = \frac{1}{2}$ and zero boundary conditions u(0) = u(1) = 0.
 - (a) Solve −u" − u = 0 starting from x = 0 with u(0) = 0. There will be one arbitrary constant A. Replace x by 1 − x in your answer, to solve −u" − u = 0 ending at u(1) = 0 with arbitrary constant B.
 - (b) Use the "jump conditions" at $x = \frac{1}{2}$ to find A and B.

XXXX