

Thank you for taking 18.085, I hope you enjoyed it.

1) (35 pts.) Suppose the 2π -periodic f(x) is a half-length square wave:

$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \pi/2 \\ -1 & \text{for } -\pi/2 < x < 0 \\ 0 & \text{elsewhere in } [-\pi, \pi] \end{cases}$$

- (a) Find the Fourier cosine and sine coefficients a_k and b_k of f(x).
- (b) Compute $\int_{-\pi}^{\pi} (f(x))^2 dx$ as a number and also as an infinite series using the a_k^2 and b_k^2 .
- (c) DRAW A GRAPH of the integral $I(x) = \int_0^x f(t) dt$ from $-\pi$ to π . What are the Fourier coefficients A_k and B_k of I(x)?
- (d) DRAW A GRAPH of the derivative $D(x) = \frac{df}{dx}$ from $-\pi$ to π . What are the Fourier coefficients of D(x)?
- (e) If you convolve D(x) * I(x) why do you get the same answer as f(x) * f(x)? Not required to find that answer, just explain D * I = f * f.

- 2) (33 pts.) (a) Compute directly the convolution f*f (cyclic convolution with N = 6) when f = (0, 0, 0, 1, 0, 0). [You could connect vectors (f₀, ..., f₅) with polynomials f₀ + f₁w + ... + f₅w⁵ if you want to.]
 - (b) What is the Discrete Fourier Transform $c = (c_0, c_1, c_2, c_3, c_4, c_5)$ of the vector f = (0, 0, 0, 1, 0, 0)? Still N = 6.
 - (c) Compute f * f another way, by using c in "transform space" and then transforming back.

3) (32 pts.) On page 310 the Fourier integral transform of the one-sided decaying pulse $f(x) = e^{-ax}$ (for $x \ge 0$ only) is computed for $-\infty < k < \infty$ as

$$\widehat{f}(k) = \frac{1}{a+ik} \,.$$

(a) Suppose this one-sided pulse is shifted to start at x = L:

$$f_L(x) = e^{-a(x-L)}$$
 for $x \ge L$, $f_L(x) = 0$ for $x < L$.

Find the Fourier integral transform $\widehat{f}_L(k)$.

(b) Draw a rough graph of the difference $D(x) = F(x) - F_L(x)$ and find its transform $\widehat{D}(k)$. NOW LET $a \to 0$.

What is the limit of D(x) as $a \to 0$?

What is the limit of $\widehat{D}(k)$ as $a \to 0$?

(c) The function $f_L(x)$ is smooth except for a _____ at x = L, so the decay rate of $\hat{f}_L(k)$ is _____. The convolution $C(x) = f_L(x) * f_L(x)$ has transform $\hat{C}(k) =$ _____ with decay rate _____. Then in x-space this convolution C(x) has a _____ at the point x = _____.