Your name is: Grading 3 Total

Thank you for taking 18.085, I hope you enjoyed it.

1) (35 pts.) Suppose the 2π -periodic f(x) is a half-length square wave:

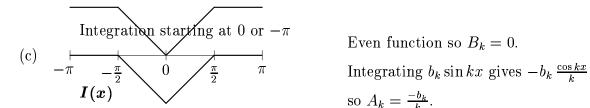
$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \pi/2 \\ -1 & \text{for } -\pi/2 < x < 0 \\ 0 & \text{elsewhere in } [-\pi, \pi] \end{cases}$$

- (a) Find the Fourier cosine and sine coefficients a_k and b_k of f(x).
- (b) Compute $\int_{-\pi}^{\pi} (f(x))^2 dx$ as a number and also as an infinite series using the a_k^2 and b_k^2 .
- (c) DRAW A GRAPH of its integral I(x). (Then dI/dx = f(x) on the interval $[-\pi,\pi]$ —choose the integration constant so I(0)=0.) What are the Fourier coefficients A_k and B_k of I(x)?
- (d) DRAW A GRAPH of the derivative $D(x) = \frac{df}{dx}$ from $-\pi$ to π . What are the Fourier coefficients of D(x)?
- (e) If you convolve D(x) * I(x) why do you get the same answer as f(x) *f(x)? Not required to find that answer, just explain D * I = f * f.

(a)
$$f(x)$$
 π $f(x) = \text{odd function} = -f(-x) \text{ so all } a_k = 0.$

Half-interval: $b_k = \frac{2}{\pi} \int_0^{\pi/2} \sin kx \, dx = \frac{2}{\pi} \frac{1 - \cos(k\pi/2)}{k}$.

(b) $\int_{-\pi}^{\pi} (f(x))^2 dx = \int_{-\pi/2}^{\pi/2} = \pi$. By Parseval this equals $\pi \sum b_k^2$. (Substituting $b_k =$ $\frac{2}{\pi}\,(\frac{1}{1},\frac{2}{2},\frac{1}{3},\frac{0}{4},\ldots)$ will give a remarkable formula from $\sum b_k^2=1.)$



so $A_k = \frac{-b_k}{k}$.

The constant term is $A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} I(x) dx = \frac{3\pi}{8}$ or $-\frac{\pi}{8}$ (integrate starting at 0 or $-\pi$).

(d)
$$D(x) = \frac{df}{dx} \stackrel{1}{\downarrow} 2\delta(x)$$
 Even function so $B_k = 0$. Derivative of $b_k \sin kx$ is $kb_k \cos kx$ so $A_k = kb_k$. Constant term is $A_0 = 0$.

Constant term is $A_0 = 0$.

(e) Convolution in x-space is multiplication in k-space. So f * f has complex Fourier coefficients c_k^2 (with factor 2π). And D(x)*I(x) has Fourier coefficients $(ikc_k)(c_k/ik)=$ c_k^2 (with same factor). D*I=f*f!! Check in x-space:

$$\int_{-\pi}^{\pi} I(t) \, D(x-t) \, dt = \text{integrate by parts} =$$

$$\int_{-\pi}^{\pi} f(t) \, f(x-t) \, dt + \text{(boundary term } = 0 \text{ by periodicity)} \, .$$

The usual minus sign disappears because of 2nd minus sign: $\frac{d}{dt}D(x-t) = -f(x-t)$. NOTE: I have now learned that we can't just multiply sine coefficients $(kb_k)(-b_k/k)$ because that gives an unwanted minus sign as in $\int \sin t \sin(x-t) dt = -\pi \cos x$.

- 2) (33 pts.) (a) Compute directly the convolution f * f (cyclic convolution with N = 6) when f = (0, 0, 0, 1, 0, 0). [You could connect vectors (f_0, \ldots, f_5) with polynomials $f_0 + f_1 w + \cdots + f_5 w^5$ if you want to.]
 - (b) What is the Discrete Fourier Transform $c = (c_0, c_1, c_2, c_3, c_4, c_5)$ of the vector f = (0, 0, 0, 1, 0, 0)? Still N = 6.
 - (c) Compute f * f another way, by using c in "transform space" and then transforming back.

With N=6 the complex number $w=e^{2\pi i/6}$ has $w^3=-1$ and $\overline{w}^3=-1$ and $w^6=1$.

- (a) f = (0, 0, 0, 1, 0, 0) corresponds to w^3 . Then f * f corresponds to w^6 which is 1. So f * f = (1, 0, 0, 0, 0, 0). (Also seen by circulant matrix multiplication.)
- (b) The transform $c = F^{-1}f = \frac{1}{6}\overline{F}f = \frac{1}{6}$ (column of \overline{F} with powers of $\overline{w}^3 = -1$): Then $c = \frac{1}{6}(1, -1, 1, -1, 1, -1)$.
- (c) The transform of f * f is $\frac{6}{36}(1^2, (-1)^2, 1^2, (-1)^2, 1^2, (-1)^2) = \frac{1}{6}(1, 1, 1, 1, 1, 1)$. Multiply that vector v by F to transform back and Fv = (1, 0, 0, 0, 0, 0, 0) as in part (a)!

3) (**32** pts.) On page 310 Example 3, the Fourier integral transform of the one-sided decaying pulse $f(x) = e^{-ax}$ (for $x \ge 0$) f(x) = 0 (for x < 0) is computed for $-\infty < k < \infty$ as

$$\widehat{f}(k) = \frac{1}{a+ik} \,.$$

(a) Suppose this one-sided pulse is shifted to start at x = L > 0:

$$f_L(x) = e^{-a(x-L)} \ \text{ for } x \geq L, \quad \ f_L(x) = 0 \ \text{ for } x < L\,.$$

Find the Fourier integral transform $\hat{f}_L(k)$.

(b) Draw a rough graph of the difference $D(x) = f(x) - f_L(x)$, on the whole line $-\infty < x < \infty$. Find its transform $\widehat{D}(k)$. NOW LET $a \to 0$.

What is the limit of D(x) as $a \to 0$?

What is the limit of $\widehat{D}(k)$ as $a \to 0$?

- (c) The function $f_L(x)$ is smooth except for a <u>jump</u> at x = L, so the decay rate of $\widehat{f}_L(k)$ is $\underline{-1/k}_-$. The convolution $C(x)=f_L(x)*f_L(x)$ has transform $\widehat{C}(k) = \underline{e^{-i2kL}/(a+ik)^2}$ with decay rate $\underline{1/k^2}$. Then in x-space this convolution C(x) has a corner (= ramp) at the point $x = \underline{2L}$.
- (a) $f_L(x)$ is f(x-L). By the shift rule (page 317) $\widehat{f}_L(k) = e^{-ikL}\widehat{f}(k) = \frac{e^{-ikL}}{a+ik}$.

(b) As
$$a \to 0$$
, $D(x)$ approaches 1 for $0 < x < L$, 0 elsewhere $a = 1$: Graph e^{-x} then $e^{-x} - e^{-(x-L)}$

 $\widehat{D}(k) = \frac{1}{a+ik} - \frac{e^{-ikL}}{a+ik}$ approaches $\frac{1-e^{-ikl}}{ik} = \text{transform of square pulse}$.

(c) FILLED IN BLANKS ABOVE