- 2. Projection onto a line in 3-dimensional space. The line contains all multiples ax of the vector a = (1, 2, 3). We are given any vector $b = (b_1, b_2, b_3)$. We want to find the number \widehat{x} so that $p = a\widehat{x}$ is the closest point to b, on the line through a.
 - (a) Draw a picture of a and b in x-y-z space. Mark the closest point p, and mark the error $e=b-p=b-a\widehat{x}$. What equation will give the number \widehat{x} ? FIND a formula for

 \widehat{x} .

Equation:

Want to solve
$$A\hat{x} = B$$
,

where $A = \begin{bmatrix} \frac{1}{2} \\ \frac{3}{3} \end{bmatrix}$, $B = \begin{bmatrix} \frac{6}{4} \\ \frac{6}{4} \end{bmatrix}$

Least squares normal equation

ATA
$$\hat{x} = A^T b$$
, i.e.
 $14\hat{x} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = b_1 + 2b_2 + 3b_3$
Get $\hat{x} = b_1 + 2b_2 + 3b_3$

(Alternatively, use scalar product in 3-dim. space to get
$$P = a\hat{x}$$
, $\hat{x} = \frac{\langle a,b \rangle}{\|a\|^2} = \frac{b_1 + 2b_2 + 3b_3}{14}$)