Your name is:	Grading	1 2 3
	Total	

1) (30 pts.) A second-order equation comes from two simpler equations:

$$-\frac{d}{dx}\left(c(x)\frac{du}{dx}\right) = f(x) \text{ comes from } -\frac{dw}{dx} = f(x) \text{ and } c(x)\frac{du}{dx} = w(x).$$

The boundary conditions for a fixed-free rod are u(0)=0 and w(1)=0. Suppose there is a unit point load at $x=\frac{2}{3}$, so $f(x)=\delta(x-\frac{2}{3})$. Suppose c(x)=6 for $x\leq \frac{1}{3}$, and at that point we change to a different material with c(x)=12 for $x\geq \frac{1}{3}$.

- (a) Solve $-\frac{dw}{dx} = f(x)$ and graph the solution w(x).
- (b) Now solve $c(x)\frac{du}{dx} = w(x)$ and graph the solution u(x).
- (c) Which of the functions u(x) and du/dx and w(x) do you expect to be continuous at a point where c(x) jumps (but f(x) is smooth)? Which of those functions do you expect to be continuous at a point where f(x) has a jump (not a delta function—and c(x) is smooth)?

XXX

2) (40 pts.) (a) Find the real part u and the imaginary part s as functions of r, θ and also as functions of x, y, for the logarithm of $z^2 = (x + iy)^2$:

$$f(x + iy) = ln[(x + iy)^2] = ln[(re^{i\theta})^2].$$

- (b) What is the gradient v(x, y) of this function u(x, y)? What are the streamlines of the flow?
- (c) Compute the flux $\int v \cdot n \, ds$ through the unit circle in one of these two ways:
 - Flux = (stream fcn at end of circle) (stream fcn at beginning of circle).
 - The unit normal n points in the r direction, and arc length is $ds = d\theta$, integrating around the unit circle (polar coordinates).
- (d) Compute the flux $\int v \cdot n \, ds$ through a big square of side 2R centered at (0,0). You could use one of the ways above (now ds = dx or dy or -dx or -dy around the square). Or you could use the divergence theorem between the square and the circle:
 - $\int \int \operatorname{div} v \, dx dy = \text{flux through square minus flux through circle.}$

xxx

- 3) (30 pts.) We want to approximate $-u_{xx}=4$ with zero boundary conditions u(0)=u(1)=0 by a finite element equation KU=F. Divide the interval from x=0 to x=1 into N+1 equal pieces of length $h=(N+1)^{-1}$. On each piece the N trial functions $\phi_j(x)$ and the N test functions $V_k(x)$ are linear. Then $\phi_j=V_j=1$ at the jth meshpoint x=jh, and $\phi_j=V_j=0$ at other meshpoints.
 - (a) Not yet finite elements: Find the weak form of $-u_{xx} = 4$ including the boundary conditions on U(x) and V(x).
 - (b) Finite elements: Now substitute $U(x) = \sum_{1}^{N} U_{j} \phi_{j}(x)$ and $V(x) = \phi_{k}(x)$ into the weak form. What equation for the numbers U_{j} comes from computing the integrals in the weak form? This is equation k in the system KU = F.
 - (c) If we add a point load at x = 1.5h, half way between two meshpoints, which entries of the matrix K and the vector F will be changed? (Don't compute the changes.)