
Your name is: ___

Grading

1 2 3

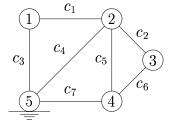
Total

1) (30 pts.) A system with 2 springs and masses is fixed-free. Constants are c_1, c_2 .

- (a) Write down the matrices A and $K = A^{T}CA$.
- (b) Prove by two tests (pivots, determinants, independence of columns of A) that this matrix K is (positive definite) (positive semidefinite).Tell me which two tests you are using!
- (c) Multiply column times row to compute the "element matrices" K_1, K_2 :

Compute
$$K_1 = (\text{column 1 of } A^T)(c_1)(\text{row 1 of } A)$$

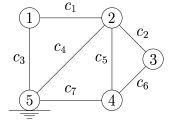
Compute
$$K_2 = (\text{column 2 of } A^T)(c_2)(\text{row 2 of } A)$$
.


Then
$$K = K_1 + K_2$$
. What vectors solve $K_2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$?

For those displacements x_1 and x_2 , what is the energy in spring 2?

XXX

2) **(33 pts.)**


A network of nodes and edges and their conductances $c_i > 0$ is drawn without arrows. Arrows don't affect the answers to this problem; the edge numbers are with the c's. Node 5 is grounded (potential $u_5 = 0$).

- (a) List all positions (i, j) of the 4 by 4 matrix $K = A^{T}CA$ that will have **zero entries**. What is row 1 of K?
- (b) Find as many independent solutions as possible to Kirchhoff's Law $A^{\mathrm{T}}y=0.$
- (c) Is $A^{T}A$ always positive definite for every matrix A? If there is a test on A, what is it? What is the trick that proves $u^{T}Ku \geq 0$ for every vector u?

3) **(37 pts.)**

Make the network in Problem 2 into a 7-bar truss! The grounded node 5 is now a supported (but turnable) pin joint, with known displacements $u_5^{\rm H}=u_5^{\rm V}=0$. All angles are 45° or 90°.

- (a) How many rows and columns in the (reduced) matrix A, after we know $u_5^{\rm H}=u_5^{\rm V}=0$? Describe in words (or a picture) all solutions to Au=0. If you add 1 bar can A become square and invertible?
- (b) Write out row 2 of A, corresponding to bar 2. Then (row 2) times the column u of displacements has what physical meaning?
- (c) What is the first equation of $A^{\mathrm{T}}w = f$ (with right side f_1^{H})? Why does $\frac{1}{2}u^{\mathrm{T}}Ku = \frac{1}{2}y^{\mathrm{T}}C^{-1}y$ and what does this quantity represent physically? (More than 1 word in that last answer, less than 10 words.)

XXX