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A different A produces the circulant second-difference matrix C' = AT A:

1 -1 0 2 -1 -1
A= 0 1 -1 gives ATA=|-1 2 -1
1 0 1 -1 -1 2

How can you tell from A that C = AT A is only semidefinite? Which vectors
solve Au = 0 and therefore Cu = 07 Note that chol(C) will fail.

Confirm that the circulant C = ATA above is semidefinite by the pivot test.
Write uTCu as a sum of two squares with the pivots as coefficients. (The
eigenvalues 0, 3, 3 give another proof that C is semidefinite.)

uTCu > 0 means that u? + u3 + 42 > uyuy + uguz + ugy; for any uy, ug, us. A
more unusual way to check this is by the Schwarz inequality [vTw| < ||v]| {|w]:

f f
[ugug + ugus + usuy| < \,/uf +uj +uj\Jud +uf i
Which u’s give equality ? Check that 4TCu = 0 for those u.
For what range of numbers b is this matrix positive definite ?
16
K= [ o } .

There are two borderline values of b when K is only semidefinite. In those cases
write uT Ku with only one square. Find the pivots if b = 5.

Is K = ATA or M = BT B positive definite (independent columns in A or B)?

1 2 1 4
3 6 3 6

We know that " Mu = (Bu)T(Bu) = (u; + 4uz)? + (2us + 5uz)? + (3uy + 6uy)2.
Show how the three squares for uTKu = (Au)T(Au) collapse into one square.

Problems 8-16 are about tests for positive definiteness.

Which of A;, A2, A3, A4 has two positive eigenvalues? Use the tests ¢ > 0 and
ac > b%, don’t compute the A’s. Find a vector u so that uTA,;u < 0.

5 6 -1 =2 |1 10 |1 10
A= [6 7] A = [—2 —5] o= [10 100] A= [10 101} '
For which numbers b and ¢ are these matrices positive definite ?

15 2 4
A_[b 9] and A——-[4 c]'

With the pivots in D and multiplier in L, factor each A into LDLT.
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10 ) Show that f(z,y) = 22 + 4zy + 3y? does not have a minimum at (0,0) even
though it has positive coefficients. Write f as a difference of squares and find
a point (z,y) where f is negative.

11  The function f(z,y) = 2%y certainly has a saddle point and not a minimum at
(0,0). What symmetric matrix S produces this f7 What are its eigenvalues ?

(12 \"lTest the columns of A to see if AT A will be positive definite in each case:

T 11
1 2 11 2
A= [0 3] and A= ; i and A= [1 9 1] .

P —
™,

/ 5
|\ 13 Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant:

I
[1}1 Iq 373] S Ta | = 4(1‘1 — T9 + 2.’153)2 .
T3

14 Which 3 by 3 symmetric matrices S produce these functions f=xTSz? Why
is the first matrix positive definite but not the second one?

(a) f= 2z} + 25 + x% — 21Ty — ToT3)
(b) f=2(z}+ 72 + 2} — 2123 — L1 T3 — L2T3)-

15 For what numbers ¢ and d are A and B positive definite? Test the three upper
left determinants (1 by 1,2 by 2,3 by 3) of each matrix:
c 11 123
A=1|1 ¢ 1 and B={2 d 4
11 ¢ 345

L 16 I f A is positive definite then A~% is positive definite. Best proof: The eigenvalues
- /of A—! are positive because " Second proof (only quick for 2 by 2):

1 -
The entries of A™! = — [_g 2} pass the determinant tests .

17 A positive definite maitrix cannot have a zero (or even worse, & negative number)
on its diagonal. Show that this matrix fails to have uTAu > 0.

4 1 1 U1
[u1 Us Ug,] 1 0 2} |ug!l isnot positive when (u1, tz, U3) =(,,)
1 25 Ug

18 A diagonal entry aj; of a symmetric matrix cannot be smaller than all the A's.
If it were, then A — a;;] would have eigenvalues and would be positive
definite. But A — a;;] has a zero on the main diagonal.




76 Chapter 1 Applied Linear Algebra

19

20

21

22

23

24

25

26

27

If all A > 0, show that «TKwu > 0 for every u # 0, not just the eigenvectors z;.
Write » as a combination of eigenvectors. Why are all “cross terms” zlz,; = 07

uTKu = (c12; +"+Cn$n)T(Cl)\1$1+"+Cn>\n$n) = cf/\lxrlr:q%— . -I—cfl)\na:,fa:" >0

. — __|cos§ —sin} {2 0 cosf sinf
Witthout multiplying 4 = [sinﬂ cos 9} [O 5] [— sinf cos 19] , find

(a) the determinant of A (b) the eigenvalues of A
(c) the eigenvectors of A (d) a reason why A is symmetric positive definite.

For fi(z,y) = 3z*+2%y+y? and fa(z,y) = 23+2y—z find the second derivative
(Hessian) matrices H, and Hy: -

oo 0%f /0 &% f/0xdy
~ |O°f/oyox  O°f[oy* |

H, is positive definite so f; is concave up (= convex). Find the minimum point
of f; and the saddle point of f, (look where first derivatives are zero).

The graph of z = z? + y? is a bowl opening upward. The graph of z = 22 — 42
is a saddle. The graph of z = —z? — y? is a bowl opening downward. What is
a test on a, b, ¢ for z = az? + 2bzy + cy® to have a saddle at (0,0) ?

Which values of ¢ give a bowl and which give a saddle point for the graph of
z = 4z% + 122y + cy? ? Describe this graph at the borderline value of c.

Here is another way to work with the quadratic function P(u). Check that
1 ¢ T 1 1T -1 Lo
P(u)=§q Ku—wu"f equals —2-(u—K fI'Ku-K f)—EfK f.

The last term —1fTK~f is Pyy,. The other (long) term on the right side is
always . When u = K~!f, this long term is zero so P = Pp,.

Find the first derivatives in f = dP/0u and the second derivatives in the matrix
H for P(u) = uf +uj —c(u? +u2)*. Start Newton’s iteration (21) at u® = (1, 0).
Which values of ¢ give a next vector u! that is closer to the local minimum at
w* = (0,0)? Why is (0,0) not a global minimum ?

Guess the smallest 2, 2 block that makes [C_l A; AT | semidefinite.

If H and K are positive definite, explain why M = [ Ig ‘2,] is positive definite

but N = [g I]g] is not. Connect the pivots and eigenvalues of M and N

to the pivots and eigenvalues of H and K. How is chol(M) constructed from
chol(H) and chol(K) ?
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10

Find (ATCA)™! in the fixed-free example by multiplying A~*C~*(AT)~*. Check
the special case with all ¢; =1 and C = .

In the free-free case when ATCA in (11) is singular, add the three equations
ATCAu = f to show that we need f,+ fz+ f3 = 0. Find a solution to ATCAu =
f when the forces f = (—1,0,1) balance themselves. Find all solutions!

In the fixed-fixed case, what are the reaction forces on the top of spring 1 and on
the bottom of spring 4?7 They should balance the total force 3mg from gravity,

pulling down on the three masses.

With ¢; = ¢3 = 1 in the fixed-free case, suppose you strengthen spring 2. Find
K = ATCA for ¢co = 10 and ¢y = 100. Compute u = K~} f with equal masses
f= (1a 1, 1)'

With ¢; = ¢3 = ¢4 = 1 in the fixed-fixed case, weaken spring 2 in the limit to
¢s = 0. Does K = ATCA remain invertible? Solve Ku = f = (1,1,1) and
explain the answer physically.

1 -1

_: For one free-free spring only, show that K = ¢ [_1 1] = “element matrix.”

(a) Assemble K'’s for springs 2 and 3 into equation (11) for Kfree free-
(b) Now include K for spring 1 (top fixed) to reach Kfixed.free int (8)
(c) Now place K for spring 4 (bottom fixed) to reach Kfiyed-fixed i {7)

When P’(6*) = 0 for the inverted pendulum, show that P”(6*) > 0 which
makes 8* stable. In other words: Asin@* = #* in (13) gives Acos6* < 1 in (14).
For proof, show that F(#) = 6 cos/sin 8 decreases from F(0) = 1 because its
derivative is negative. Then F(6*) = A cos6* < 1.

The stiffness matrix is K = ATCA = D — W = diagonal — off-diagonal. It has
row sums > 0 and W > 0. Show that K~ has positive entries by checking this
identity (the infinite series converges to K ! and all its terms are > 0):

KK'=(D-W)YD'+D'WD '+ D'WD ‘WD +...) =1L
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Example 2 Allc;=¢ and all m; = m in the fixed-free hanging line of springs. Then

2 -1 0 Jfrie
ATCA=c| -1 2 -1| and (ATcA)yt=- |1 22
0 -1 1 ci12 3

The displacements u = K~1f change from the fixed-fixed example because K has changed:

1 111 mg mg
Displacements u=(ATCA) T f==1122 mgl=—15
ci123)|mg ¢ le

In this fixed-free case, those displacements 3,5,6 are greater than 1.5,2.0,1.5. The
number 3 appears in the first displacement u; because all three masses are pulling the
first spring down. The next mass has an additional displacement 3+2= 5) from the
two masses below it. The third mass drops even moré 3+2+1= 6). The elongations
¢ = Au in the three springs display those numbers 3,2 L

1 001, m 3
Elongations e=| -1 10 15 =T 2
0 -1 1] ¢ L6 11

Multiplying by ¢, the forces in the three springs are w1 = 3mg and wy = 2mg and
ws = mg. The first spring has three masses below it, the second spring has two, the third

spring has one. All springs are now stretched.

The special point of a square matrix A is that those internal forces w can be found
directly from the external forces f. The balance equation ATw = f determines w imme-
diately and uniquely, because ™m = n and AT is square and invertible:

Sprin 111 mg 3mg | 3 masses below
f(::'cesg w= (AT)—lf is {011 mg | = | 2mg 9 masses below
001 mg 1mg 1 mass: free end

Then e comes from C 1w and u comes from A~ te. In this “determinate” case m = T,
we are allowed to write (ATCA)™" = AT (AT

Remark 1 When the displacement at the top is fixed by uo = 0, it requires a force
to keep it that way. This is an external reaction force fo, holding up the line of springs.
This reaction force is not given in advance. It is part of the output, from force balance
at the top. The first spring is pulling down with internal force wy = 3mg. The reaction
fo = —3mg pulls upward to balance it. A structural engineer needs to know the reaction
forces, to be sure the support will hold and the structure won't collapse.
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Example 3 A FREE-FREE line of springs has no supports. This means trouble in A
and K (spring 1 is gone). The matrix A is 2 by 3, short and wide. Here is e = Au:

U
- -1 10
Unstable [ zz ] - [ Uz J = [ 0 -1 1 } U (9)

Uz — U2 Us

| Now there is a nonzero solution to Au = 0. The masses can move with no stretching
of the springs. The whole line can shift by u = (1,1, 1) and this still leaves e = (0,0).
The columns of A are dependent and the vector (1,1,1) is in the nullspace:

1 1
i Rigid motion u = |1 Au = [ _(1) i (1)] 1] = [8} =e. (10)
: 11 B 1

In this case, ATC'A cannot be invertible. K must be singular, because Au = 0 certainly
leads to ATC Au = 0. The stiffness matrix ATCA is still square and symmetric, but it
is only positive semidefinite (like B in Chapter 1, with both ends free):

; =5 0 2 4 0

S | -1 10

Rl I [ | I A R T
0 1 3 0 —Cs3 C3

The pivots will be co and c3 and no third pivot. Two eigenvalues will be positive but the
vector (1,1,1) will be an eigenvector for A = 0. The matrix is not invertible and we can
solve ATCAu = f only for special vectors f. The external forces have to add to zero,
f1 + fa + fs = 0. Otherwise the whole line of springs (with both ends free) will take off

like a rocket.
(ma) (ma)—=_ss—(ma)
E Rigid i .
A . (g (mg)
(1) m.otlons \o_
Nt with no b 3
supports G -

\ oz
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+— Translation |m5 s {ma
A Rotation — \ o
\ ms3 ]

Figure 2.2: The free-free line of springs can move without stretching so Au =0
1 has nonzero solutions u = (c,c,c). Then ATCA is singular (also for the “circle” of

springs).




