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1. Enter the matrix K5 by the MATLAB command toeplitz([2 —1 0 0 0]).

2. Compute the determinant and the inverse by det(X') and inv(K). For a
neater answer compute the determinant times the inverse.

3. Find the L, D, U factors of K5 and verify that the 7, j entry of L™1 is j/3.

The vector of pivots for Ky is d = [2 3 4 2] This is d = (2:5)./(1:4), using
MATLAB’s counting vector i : j = (i,4+ 1,...,5). The extra . makes the
division act a@ component at a time. Find ¢ in the MATLAB expression for
L = eye(4) — diag(£, —1) and multiply L * diag(d) * L’ to recover K.

If A has pivots 2, 7, 6 with no row exchanges, what are the pivots for the upper
left 2 by 2 submatrix B (without row 3 and column 3)? Explain why.

How many entries can you choose freely in a 5 by 5 symmetric matrix K7 How
many can you choose in a 5 by 5 diagonal matrix D and lower triangular L

(with ones on its diagonal)?
Suppose A is rectangular (m by n) and C is symmetric (m by m).

1. Transpose ATC'A to show its symmetry. What shape is this matrix?

2. Show why AT A has no negative numbers on its diagonal.

Factor these symmetric matrices into A = LDLT with the pivots in D:

210
Az[; 3] and A=[ll) b] and A= 1|1 2 1
¢ 01 2

The Cholesky command A = chol(X) produces an upper triangular A with
K = ATA. The square roots of the pivots from D are now included on the

diagonal of A (so Cholesky fails unless K = K and the pivots are positive).
Try the chol command on K3, T3, B;, and Bs + eps * eye(3).

The all-ones matrix ones(4) is positive semidefinite. Find all its pivots (zero
not allowed). Find its determinant and try eig(ones(4)). Factor it into a 4 by 1
matrix L times a 1 by 4 matrix LT.

The matrix K = ones(4) + eye(4)/100 has all 1’s off the diagonal, and 1.01
down the main diagonal. Is it positive definite? Find the pivots by lu(K) and
eigenvalues by eig(K). Also find its LDL" factorization and inv(X).

The matrix K =pascal(4) contains the numbers from the Pascal triangle (tilted
to fit symmetrically into K'). Multiply its pivots to find its determinant. Factor
K into LLT where the lower triangular L also contains the Pascal triangle!

The Fibonacci matrix [ ] is indefinite. Find its pivots. Factor it into LDLT.
Multiply (1,0) by this matrix 5 times, to see the first 6 Fibonacci numbers.
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It A= LU, solve by hand the equation Az =
Solve Lc = f and then Uz = ¢ (then LUz =

1.3 Elimination Leads to X = LDLT

Le = f is forward elimination and Uz = ¢ is back substitution:

)

1
L=|3 1
0 2

1

U=

From the multiplication LS show that

1
L = €21 1
f3 0 1

280
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7

is the inverse of S =

1

—fly 1
—f3 0 1

_ & subtracts multiples of row 1 from lower rows. L adds them back.

1
L=10yn 1
by 3y 1

is not the inverse of § =

1
—{o 1
—ly1 —L

1

' 16 ] Unlike the previous exercise, which eliminated only one column, show that
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[ without ever finding A itself.
Lcis the desired equation Az = f).

Write L as Li L, to find the correct inverse L= = Ly LT (notice the order):

1 1
L=1¢m 1 0 1
£ 0 1] |0 Za

1

1
and L7'= (0
0

1

—Ls2

1

—ln
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By trial and error, find examples of 2 by 2 matrices such that

1. LU £ UL

2. A* = —], with real entries in A

3. B? =, with no zeros in B

4. CD = —DC, not allowing CD = 0

1

1
01

Write down a 3 by 3 matrix with row 1 — 2 % row 2 +row 3 = 0 and find a
similar dependence of the columns—a combination of columns that gives zero.

Draw these equations in their row form (two intersecting lines) and find the
solution (z,y). Then draw their column form by adding two vectors:

1) o <[]

True or false: Every matrix A can be factored into a lower triangular L times
an upper triangular U, with nonzero diagonals. Find I and U when possible:

When is A = [

2 4
4 d

J=LU?

4

a b
d

J:LU?

5
2

|
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Here is one of the most useful formulas in linear algebra. (it extends to T —U VT):

T__luvTT -

Woodbury-Sherman-Motrrison 21 el WL
K= =T"+ 1—oTT 1

2
Inverse of K = T — uv™ (21)
The proof multiplies the right side by 7' — wvT, and simplifies to .

Problem 1.1.7 displays T~! — K~' when the vectors have length n = 4:
I = rowlof TP =[4 3 2 1] 1-oTu=1+4=5

For any n, K~! comes from the simpler 7! by subtracting wTw/(n+1) with w =n:—1:1.

[_‘—— —

Problem Set 1.4 |

1 For —u" = §(z — a), the soin:i(;h must -be_iir:e;rﬂ;; each side of the load. What
four conditions determine A, B, C, D if u(0) = 2 and u(1) = 07

u(z)=Az+B for 0<zr<a and uw(z)=Cz+D for a<z<1.

2 Change Problem 1 to the free-fixed case u/(0) = 0 and u(1) = 4. Find and solve
the four equations for A, B,C, D.

3 Suppose there are two unit loads, at the points a = % and b = % Solve the

fixed-fixed problem in two ways: First combine the two single-load solutions.
The other way is to find six conditions for A, B,C,DE, F:

1 2
u(z) = Ar+ B formgg, Cz+D for%ﬁzgg, Ex+ F forx2—3-.

4 ) Solve the equation —d?u/dz? = §(z — a) with fixed-free boundary conditions
4(0) = 0 and v/(1) = 0. Draw the graphs of u(z) and v'(z).

5  Show that the same equation with free-free conditions v'(0) = 0 and (1) =0
has no solution. The equations for C and D cannot be solved. This corresponds
to the singular matrix B, (with 1,1 and n, n entries both changed to 1).

6  Show that —u” = d(z — a) with periodic conditions u(0) = u(1) and /(0) =
/(1) cannot be solved. Again the requirements on C and D cannot be met.
This corresponds to the singular circulant matrix C,, (with 1,n and n, 1 entries

changed to —1).

7 A difference of point loads, f(z) = d(z — 5) — oz — 2), does allow a free-

free solution to —u” = f. Find infinitely many solutions with «'(0) = 0 and
(1) =0.

8  The difference f(z) = d(z — 1) — 6(z — %) has zero total load, and —u" = f(z)
can also be solved with periodic boundary conditions. Find a particular solution
Upart(z) and then the complete solution Upart + Unuil-
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9 | The distributed load f(z) = 1 is the integral of loads d(z — a) at all points
z = a. The free-fixed solution u(z) = 1(1—z?) from Section 1.3 should then be
the integral of the point-load solutions (1 — z for a <z, and 1 —a fora > z):

u(z) = Az(l—x) da+/1(_1—a) da = (1—$)x+(1——1;)—($—%2) = —;——%x?YES!

Check the fixed-fixed case u(z) = [; (1 — z)ada + fxl(l —a)zda = .

10 If you add together the columns of X! (or T7'), you get a “discrete parabola”
that solves the equation Ku = f (or Tu = f) with what vector f? Do this
addition for K7* in Figure 1.9 and 7" in Figure 1.10.

Problems 11-15 are about delta functions and their integrals and derivatives.
11 .tlThe integral of &(x) is the step function S(z). The integral of S(z) is the ramp
_/R(z). Find and graph the next two integrals: the quadratic spline Q(z) and
the cubic spline C(z). Which derivatives of C(z) are continuous at z = 07

12  The cubic spline C(z) solves the fourth-order equation u" = §(z). What is the
complete solution u(z) with four arbitrary constants? Choose those constants
so that u(1) = w”(1) = w(—1) = u”(—1) = 0. This gives the bending of a
. uniform simply supported beam under a point load.

\_13 /The defining property of the delta function d(z) is that

—

/ (z) g(z) dz = g(0)  for every smooth function g(z).

_——=__How does this give “area = 1” under §(z)? What is [ 6(x — 3) g(z) dz?
;/ .I\
i/ 14  The function §(x) is a “weak limit” of very high, very thin square waves SW:

g SW(w)=% for |z <h has / SW(z) g(z) dz — g(0) as h—0.

For a constant g(z) = 1 and every g(z) = z", show that [ SW(z)g(z)dz —
9(0). We use the word “weak” because the rule depends on test functions g(z)

15  The derivative of §(z) is the doublet §'(z). Integrate by parts to compute

/oo g(z) &' (z) dz = — /oo(?) §(z) dz = (?7) for smooth g(z).

—o0
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5  Construct B = B and [Q, E] = eig(B) with B(1,1) =1 and B(6,6) = 1. Verify
that E = diag(e) with eigenvalues 2*ones(1,6) —2xcos({0 : 5] #pi/6) in e. How
do you adjust @ to produce the (highly important) Discrete Cosine Transform
with entries DCT = cos([.5: 5.5]' * [0 : 5] * pi/6)/sqrt(3) 7

6  The free-fixed matrix T = Tg has T(1,1) = 1. Check that its eigenvalues are
2—2cos [(k— 1) /6.5]. The matrix cos([.5 : 5.5) % [.5 : 5.5] % pi/6.5)/sqrt(3.25)
should contain its unit eigenvectors. Compute @ * @ and Q' +xTx*Q.

7 The columns of the Fourier matrix F, are eigenvectors of the circulant matrix
C = C,. But [Q, E] = eig(C) does not produce Q = F;. What combinations of
the columns of Q give the columns of Fy 7 Notice the double eigenvalue in E.

8 Show that the n eigenvalues 2 — 2 cos % of Ky, add to the trace 2+ --- +2.

9 K3 and Bj have the same nonzero eigenvalues because they come from the same
4x3 backward difference A_. Show that K3 = A_TA_ and B, =A_A_T. The
eigenvalues of K3 are the squared singular values o2 of A_ in 1.7.

Problems 10-23 are about diagonalizing A by its eigenvectors in S.

10 Factor these two matrices into A = SAS™!. Check that A? = SA2S L
1 2 11
A= [0 3] and A= [2 2] .

11 If A = SAS-!then A= =( )( )( ). The eigenvectors of A® are (the same
columns of S)(different vectors).

12 If A has A\; = 2 with eigenvector z; = [(1,] and Ag = 5 with z9 = [}], use
SAS-! to find A. No other matrix has the same X’s and z’s.

,'—'?-;\
{/ 13 :I Suppose A = SAS™'. What is the eigenvalue matrix for A + 217 What is the
‘ / eigenvector matrix? Check that A+ 21 =( )( )

14  If the columns of S (n eigenvectors of A) are linearly independent, then
(a) A is invertible (b) A is diagonalizable (c) S is invertible

15 The matrix A = [§ 1] is not diagonalizable because the rank of A—3/ is
A only has one line of eigenvector. Which entries could you change to make A
diagonalizable, with two eigenvectors?

16 A% = SAkS-! approaches the zero matrix as k — oo if and only if every X has
absolute value less than . Which of these matrices has A¥ — 07

A = [2 g] and Agz[:? g] and  As =K.
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1.5 Eigenvalues and Eigenvectors

The rabbit and wolf populations show fast growth of rabbits (from 67) but loss
to wolves (from —2w). Find A and its eigenvalues and eigenvectors:

dr dw

S —6r—2 22 = .

7 6r w and 7 2r+w
If 7(0) = w(0) = 30 what are the populations at time ¢? After a long time, is
the ratio of rabbits to wolves 1 to 2 or is it 2 to 17

Substitute y = e into y” = 6y’ — 9y to show that A = 3 is a repeated root.
This is trouble; we need a second solution after e3. The matrix equation is

alvl-ls 3 )

Show that this matrix has A = 3,3 and only one line of eigenvectors. Trouble

here too. Show that the second solution is y = tet.

Explain why A and AT have the same eigenvalues. Show that A = 1 is always
an eigenvalue when A is a Markov matrix, because each row of AT adds to 1
and the vector is an eigenvector of AT.

Find the eigenvalues and unit eigenvectors of A and T, and check the trace:
111
A={10 0 T=[_} “é}
100

Here is a quick “proof” that the eigenvalues of all real matrices are real:
q

T
. T Az .
Az =Mz gives zTAz =Mz so A= = is real.
zTz

Find the flaw in this reasoning—a hidden assumption that is not justified.

Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two
numbers can be eigenvalues of these matrices?

To find the eigenfunction y(z) = sin knz, we could put y = €*® in the differential
equation —u” = Au. Then —a%e™ = Xe®™® gives a = iV or a = —ivA. The
complete solution y(z) = Ce**® 4+ De=** has C' + D = 0 because y(0) = 0.
That simplifies y(z) to a sine function:

y(z) = C(e Az _ gt ’\z) = 2iCsin Vz.

y(1) = 0 yields sinv/A = 0. Then v/A must be a multiple of kr, and \ = k*x2
as before. Repeat these steps for y'(0) =y'(1) = 0 and also y'(0) = y(1) = 0.




