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The inverses of K3 and K, (please also invert K») have fractions s
4 321
3 21
1 1136 4 2
—1_ 1 -1 1
K3—4f121§ andK4—52463
1 2 3 4

First guess the determinant of K = K;. Then compute det(K) and inv(K) and
det(K)* inv(K)—any software is allowed.

(Challenge problem) Find a formula for the 4, j entry of K. <! below the diagonal
(¢ > j). Those entries grow linearly along every row and up every column.
(Section 1.4 will come back to these important inverses.) Problem 7 below is
developed in the Worked Example of Section 1.4.

A column u times a row vT is a rank-one matrix uvT. All columns are
multiples of u, and all rows are multiples of v™. 7,7! — K, ! has rank 1

16 12 8 4 47 14 3 2 1)
1112 9 6 3 113
-l Kl = Z = —
T - K 5( 8 6 4 2 2
4 3 21 1

Write K3 —T5 in this special form uv™. Predict a similar formula for T; ! — K. ey

(a) Based on Problem 7, predict the 4, j entry of Ty * — K * below the diagonal.

b) Subtract this from your answer to Problem 1 (the formula for T when
( y 5
i > j). This gives the not-so-simple formula for K; 2L

Following Example 1.1 A with C instead of B, show that e = (1,1,1, 1) is
perpendicular to each column of Cy. Solve Cu = f = (1,—1,1,—1) with the
singular matrix C by u = pinv(C) * f. Try u = C\e and C\f, before and after
adding a fifth equation 0 = 0.

The “hanging matrix” H in Worked Example 1.1 B changes the last entry of K3
to Hyz = 1. Find the inverse matrix from H~! = JT-!J. Find the inverse also
from H = UU™ (check upper times lower triangular!) and H-! = (U~1)Ty-1,

Suppose U is any upper triangular matrix and J is the reverse identity matrix
in 1.1 B. Then JU is a “southeast matrix”. What geographies are UJ and
JUJ? By experiment, a southeast matrix times a northwest matrix is

Carry out elimination on the 4 by 4 circulant matrix Cy to reach an upper
triangular U (or try [L,U] = lu(C) in MATLAB). Two points to notice: The
last entry of U is ____ because C is singular. The last column of U has new
nonzeros. Explain why this “fill-in” happens.
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1.1 Four Special Matrices 11

By hand, can you factor the circulant C, (with three nonzero diagonals, allowing
wraparound) into circulants L times U (with two nonzero diagonals, allowing
wraparound so not truly triangular)?

Gradually reduce the diagonal 2, 2, 2 in the matrix K until you reach a singular
matrix M. This happens when the diagonal entries reach . Check the
determinant as you go, and find a nonzero vector that solves Mu = 0.

Questions 15-21 bring out important facts about matrix multiplication.
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| 15 \ How many individual multiplications to create Az and A? and AB?

Anxnpx1 ApxnAnxn AanBnXp=(AB)mxp
You can multiply Az by rows (the usual way) or by columns (more important).

Do this multiplication both ways:

By rows 2 3| (1| _ |inner product using row 1
y 4 5{ 2] |inner product using row 2

2 3|1 2 3 combination
By columns [4 5} {2} =1 [4] +2 [5] - [ of columns ]

The product Az is a linear combination of the columns of A. The equations
Az = b have a solution vector z exactly when b is a of the columns.

Give an example in which b is not in the column space of A. There is no solution
to Az = b, because b is not a combination of the columns of A.

Compute C = AB by multiplying the matrix A times each column of B:
2 3|11 2] [8 =
4 5([2 4 |14 x|’
You can also compute AB by multiplying each row of A times B:
2 311 2] [2*xrow1+3x%row2 (8 16
4 5|2 4 " |4*rowl4+5%Tow 2| |x x|
A solution to Bz = 0 is also a solution to (AB)z = 0. Why? From

o=y -] i e[ 2]

Thus, A * B(:,j) = C(.,)).
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The four ways to find AB give numbers, columns, rows, and matrices:
1 (rows of A) times (columns of B) C(ij)=A(i,:)* B(:.j)

2 A times (columns of B) C(:j) =Ax B(:j)

3 (rows of A) times B C(i,:)=A(i,))+B

4 (columns of A) times (rows of B)  fork=1:n, C=C+A(:,k) * B(k,:);
end

Finish these 8 multiplications for columns times rows. How many for n by n?

R R e R B |

\\ Which one of these equations is true for all n by n matrices A and B?

AB = BA (AB)A = A(BA) (AB)B = B(BA) (AB)? = A2B?.

Use n = 1000; e = ones(n, 1); K = spdiags([—e, 2 * e,—e],~1:1,m,7n); to enter
K000 as a sparse matrix. Solve the sparse equation Ku = e by u = K\e. Plot
the solution by plot(u).

Create 4-component vectors %, v, w and enter A = spdiags([u, v, w|,—1:1,4,4).
Which components of u and w are left out from the —1 and 1 diagonals of A?

Build the sparse identity matrix 7 = sparse(3, 4, s, 100, 100) by creating vectors
4,7, s of positions , j with nonzero entries s. (You could use a for loop.) In this
case speye(100) is quicker. Notice that sparse(eye(10000)) would be a disaster,
since there isn’t room to store eye(10000) before making it sparse.

The only solution to Ku = 0 or Ty = 0isu=0,s0 K and T are invertible. For
proof, suppose w; is the largest component of 4. If ~Ui—1 + 2u; — uiqq is zero,
this forces u;_; = u; = ui+1. Then the next equations force every u; = u;. At
the end, when the boundary is reached, —u,_; + 2u, only gives zero if u = (.

Why does this “diagonally dominant” argument fail for B and ¢7
For which vectors v is toeplitz(v) a circulant matrix (cyclic diagonals) ?

(Important) Show that the 3 by 3 matrix & comes from AT Ay:

-1 1 0 90
Ay = 0 -1 1 o0 is a “difference matrix”
0 0 -1 1

Which column of 4, would you remove to produce A; with 7' = ATA; ? Which
column would you remove next to produce Ay with B = ATA;? The differ-
ence matrices Ay, A;, Ay have 0,1,2 boundary conditions. So do the “second
differences” K, T', and B.
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Problem Set 1.2|

What are the second derivative v”(z) and the second difference A2U,? Use 6(x).

—2A

ul() = {Ax ifz <0 Un___{An ifn<0 _ —OA
Br ifz>0 Bn ifn>0 B

2B

u(z) and U are piecewise linear with a corner at 0.

Solve the differential equation —u”(z) = §(z) with u(-2) = 0 and u(3) = 0.
The pieces v = A(z +2) and v = B(z — 3) meet at z = 0. Show that the
vector U = (u(—1),u(0),u(1),u(2)) solves the corresponding matrix problem
KU = F = (0,1,0,0).

Problems 3—12 are about the “local accuracy” of finite differences.

3

The h? term in the error for a centered difference (u(z + h) — u(z — h))/2h is
%hzu’”(x). Test by computing that difference for u(z) = z% and z*.
Verify that the inverse of the backward difference matrix A_ in (28) is the sum

matrix in (29). But the centered difference matrix Ag = (A4 + A_)/2 might
not be invertible! Solve Agu = 0 for n = 3 and n = 5.

In the Taylor series (2), find the number a in the next term ah*u™(x) by testing
u(z) = z* at z = 0.

For u(z) = «*, compute the second derivative and second difference A%u/(Ax)?.
From the answers, predict ¢ in the leading error in equation 9).

Four samples of u can give fourth-order accuracy for du/dx at the center:

—Ug +8u; — 8u_; +u_o du 4d5u
12h dz - dzb +
1. Check that this is correct for u = 1 and v =2 and u = zt.
2. Expand ug, u1, U1, Uz as in equation (2). Combine the four Taylor series

to discover the coefficient b in the h* leading error term.

Question Why didn’t I square the centered difference for a good A??
Answer A centered difference of a centered difference stretches too far:
Bolo  _ Untz = 2un F Un-2
oh 2h " (2h)2
The second difference matrix now has 1,0,—2,0,1 on a typical row. The
accuracy is no better and we have trouble with unye at the boundaries.

Can you construct a fourth-order accurate centered difference for d?u/dz?, choos-
ing the right coefficients to multiply ws, %1, %o, U-1, U_o?




