18085 Homework 1

10 Chapter 1 Applied Linear Algebra

$$K_3^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} \quad \text{and} \quad K_4^{-1} = \frac{1}{5} \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

First guess the determinant of $K = K_5$. Then compute det(K) and inv(K) and det(K)*inv(K)—any software is allowed.

- (Challenge problem) Find a formula for the i, j entry of K_4^{-1} below the diagonal $(i \geq j)$. Those entries grow linearly along every row and up every column. (Section 1.4 will come back to these important inverses.) Problem 7 below is developed in the Worked Example of Section 1.4.
- 7 A column u times a row v^{T} is a rank-one matrix uv^{T} . All columns are multiples of u, and all rows are multiples of v^{T} . $T_{4}^{-1} K_{4}^{-1}$ has rank 1:

$$T_4^{-1} - K_4^{-1} = \frac{1}{5} \begin{bmatrix} 16 & 12 & 8 & 4 \\ 12 & 9 & 6 & 3 \\ 8 & 6 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$$

Write $K_3 - T_3$ in this special form uv^{T} . Predict a similar formula for $T_3^{-1} - K_3^{-1}$.

- **8** (a) Based on Problem 7, predict the i, j entry of $T_5^{-1} K_5^{-1}$ below the diagonal.
 - (b) Subtract this from your answer to Problem 1 (the formula for T_5^{-1} when $i \geq j$). This gives the not-so-simple formula for K_5^{-1} .
- Following Example 1.1 A with C instead of B, show that e=(1,1,1,1) is perpendicular to each column of C_4 . Solve Cu=f=(1,-1,1,-1) with the singular matrix C by $u=\mathsf{pinv}(\mathsf{C})*\mathsf{f}$. Try $u=\mathsf{C}\setminus\mathsf{e}$ and $\mathsf{C}\setminus\mathsf{f}$, before and after adding a fifth equation 0=0.
- 10 The "hanging matrix" H in Worked Example 1.1 B changes the last entry of K_3 to $H_{33}=1$. Find the inverse matrix from $H^{-1}=JT^{-1}J$. Find the inverse also from $H=UU^{\rm T}$ (check upper times lower triangular!) and $H^{-1}=(U^{-1})^{\rm T}U^{-1}$.
- Suppose U is any upper triangular matrix and J is the reverse identity matrix in **1.1 B**. Then JU is a "southeast matrix". What geographies are UJ and JUJ? By experiment, a southeast matrix times a northwest matrix is _____.
- Carry out elimination on the 4 by 4 circulant matrix C_4 to reach an upper triangular U (or try [L, U] = lu(C) in MATLAB). Two points to notice: The last entry of U is _____ because C is singular. The last column of U has new nonzeros. Explain why this "fill-in" happens.

Questions 15-21 bring out important facts about matrix multiplication.

15 How many individual multiplications to create Ax and A^2 and AB?

$$A_{n \times n} x_{n \times 1}$$
 $A_{n \times n} A_{n \times n}$ $A_{m \times n} B_{n \times p} = (AB)_{m \times p}$

You can multiply Ax by rows (the usual way) or by columns (more important). Do this multiplication both ways:

By rows
$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \text{inner product using row 1} \\ \text{inner product using row 2} \end{bmatrix}$$
By columns
$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} \text{combination} \\ \text{of columns} \end{bmatrix}$$

The product Ax is a linear combination of the columns of A. The equations Ax = b have a solution vector x exactly when b is a _____ of the columns.

Give an example in which b is not in the column space of A. There is no solution to Ax = b, because b is not a combination of the columns of A.

18 Compute C = AB by multiplying the matrix A times each column of B:

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 8 & * \\ 14 & * \end{bmatrix}.$$

Thus, A * B(:,j) = C(:,j).

 \mathbf{t}

ļ

You can also compute AB by multiplying each row of A times B:

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 * \operatorname{row} \ 1 + 3 * \operatorname{row} \ 2 \\ 4 * \operatorname{row} \ 1 + 5 * \operatorname{row} \ 2 \end{bmatrix} = \begin{bmatrix} 8 & 16 \\ * & * \end{bmatrix}.$$

A solution to Bx = 0 is also a solution to (AB)x = 0. Why? From

$$Bx = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ how do we know } ABx = \begin{bmatrix} 8 & 16 \\ * & * \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}?$$

- 20 The four ways to find AB give numbers, columns, rows, and matrices:
 - $\frac{1}{2} (rows of A) times (columns of B) C(i,j) = A(i,:) * B(:,j)$
 - 2 A times (columns of B) 3 (rows of A) times B C(:,j) = A * B(:,j)C(i,:) = A(i,:) * B
 - 4 (columns of A) times (rows of B) for k=1:n, C=C+A(:,k)*B(k,:);

Finish these 8 multiplications for columns times rows. How many for n by n?

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} * & * \\ * & * \end{bmatrix} = \begin{bmatrix} 8 & * \\ * & * \end{bmatrix}.$$

Which one of these equations is true for all n by n matrices A and B?

$$AB = BA$$
 $(AB)A = A(BA)$ $(AB)B = B(BA)$ $(AB)^2 = A^2B^2$

- Use n=1000; $e={\sf ones}(n,1)$; $K={\sf spdiags}([-e,2*e,-e],-1:1,n,n)$; to enter K_{1000} as a sparse matrix. Solve the sparse equation Ku=e by ${\sf u}={\sf K}\backslash {\sf e}$. Plot the solution by ${\sf plot}(u)$.
- Create 4-component vectors u, v, w and enter $A = \operatorname{spdiags}([u, v, w], -1:1, 4, 4)$. Which components of u and w are left out from the -1 and 1 diagonals of A?
- Build the sparse identity matrix $I = \mathsf{sparse}(i, j, s, 100, 100)$ by creating vectors i, j, s of positions i, j with nonzero entries s. (You could use a for loop.) In this case $\mathsf{speye}(100)$ is quicker. Notice that $\mathsf{sparse}(\mathsf{eye}(10000))$ would be a disaster, since there isn't room to store $\mathsf{eye}(10000)$ before making it sparse .
- The only solution to Ku = 0 or Tu = 0 is u = 0, so K and T are invertible. For proof, suppose u_i is the largest component of u. If $-u_{i-1} + 2u_i u_{i+1}$ is zero, this forces $u_{i-1} = u_i = u_{i+1}$. Then the next equations force every $u_j = u_i$. At the end, when the boundary is reached, $-u_{n-1} + 2u_n$ only gives zero if u = 0. Why does this "diagonally dominant" argument fail for B and C?
- **26** For which vectors v is toeplitz(v) a circulant matrix (cyclic diagonals)?
- 27 (Important) Show that the 3 by 3 matrix K comes from $A_0^{\mathrm{T}}A_0$:

$$A_0 = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
 is a "difference matrix"

Which column of A_0 would you remove to produce A_1 with $T = A_1^T A_1$? Which column would you remove next to produce A_2 with $B = A_2^T A_2$? The difference matrices A_0, A_1, A_2 have 0, 1, 2 boundary conditions. So do the "second differences" K, T, and B.

Problem Set 1.2

1 What are the second derivative u''(x) and the second difference $\Delta^2 U_n$? Use $\delta(x)$.

$$u(x) = \begin{cases} Ax & \text{if } x \le 0 \\ Bx & \text{if } x \ge 0 \end{cases} \qquad U_n = \begin{cases} An & \text{if } n \le 0 \\ Bn & \text{if } n \ge 0 \end{cases} = \begin{bmatrix} -2A \\ -A \\ 0 \\ B \\ 2B \end{bmatrix}$$

u(x) and U are piecewise linear with a corner at 0.

Solve the differential equation $-u''(x) = \delta(x)$ with u(-2) = 0 and u(3) = 0. The pieces u = A(x+2) and u = B(x-3) meet at x = 0. Show that the vector U = (u(-1), u(0), u(1), u(2)) solves the corresponding matrix problem KU = F = (0, 1, 0, 0).

Problems 3-12 are about the "local accuracy" of finite differences.

- The h^2 term in the error for a centered difference (u(x+h)-u(x-h))/2h is $\frac{1}{6}h^2u'''(x)$. Test by computing that difference for $u(x)=x^3$ and x^4 .
- Verify that the inverse of the backward difference matrix Δ_{-} in (28) is the sum matrix in (29). But the centered difference matrix $\Delta_{0} = (\Delta_{+} + \Delta_{-})/2$ might not be invertible! Solve $\Delta_{0}u = 0$ for n = 3 and n = 5.
- In the Taylor series (2), find the number a in the next term $ah^4u''''(x)$ by testing $u(x) = x^4$ at x = 0.
- For $u(x) = x^4$, compute the second derivative and second difference $\Delta^2 u/(\Delta x)^2$. From the answers, predict c in the leading error in equation (9).
- 7 Four samples of u can give fourth-order accuracy for du/dx at the center:

$$\frac{-u_2 + 8u_1 - 8u_{-1} + u_{-2}}{12h} = \frac{du}{dx} + bh^4 \frac{d^5u}{dx^5} + \cdots$$

- 1. Check that this is correct for u = 1 and $u = x^2$ and $u = x^4$.
- 2. Expand u_2, u_1, u_{-1}, u_{-2} as in equation (2). Combine the four Taylor series to discover the coefficient b in the h^4 leading error term.
- 8 Question Why didn't I square the centered difference for a good Δ^2 ?

 Answer A centered difference of a centered difference stretches too far:

$$\frac{\Delta_0}{2h} \frac{\Delta_0}{2h} u_n = \frac{u_{n+2} - 2u_n + u_{n-2}}{(2h)^2}$$

The second difference matrix now has 1, 0, -2, 0, 1 on a typical row. The accuracy is no better and we have trouble with u_{n+2} at the boundaries.

Can you construct a fourth-order accurate centered difference for d^2u/dx^2 , choosing the right coefficients to multiply $u_2, u_1, u_0, u_{-1}, u_{-2}$?