
Part I : Highlights of Linear Algebra

I.1 Multiplication Ax Using Columns of A

We hope you already know some linear algebra. It is a beautiful subject—more useful to more

people than calculus (in our quiet opinion). But even old-style linear algebra courses miss basic

and important facts. This first section of the book is about matrix-vector multiplication Ax.

We always use examples to make our point clear.

Example 1 Multiply A times x using the three rows of A and then using the two columns :

By rows





2 3
2 4
3 7





[

x1

x2

]

=





2x1 + 3x2

2x1 + 4x2

3x1 + 7x2



 =
inner products

of the rows

with x = (x1, x2)

By columns





2 3
2 4
3 7





[

x1

x2

]

= x1





2
2
3



+ x2





3
4
7



 =
combination

of the columns

a1 and a2

You see that both ways give the same result. The first way (a row at a time) produces 3 inner products.

Those are also known as “dot products” because of the dot notation :

row ··· column = (2, 3) ··· (x1, x2) = 2x1 + 3x2 (1)

This is the way to find the three separate components of Ax. We use this for computing—but not

for understanding. It is low level. Understanding is higher level, staying with vectors.

The vector approach sees Ax as a “linear combination” of a1 and a2. This is the fundamental

operation of linear algebra ! A linear combination of vectors a1 and a2 includes two steps :

(1) Multiply a1 and a2 by “scalars” x1 and x2

(2) Add vectors x1a1 + x2a2.

Thus Ax is a linear combination of the columns of A. This is fundamental.

This thinking leads us to the column space of A. The key idea is to take all combinations

of the columns. All real numbers x1 and x2 are allowed—the space includes Ax for all vectors x.

In this way we get infinitely many output vectors Ax. And we can see those outputs geometrically.
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2 Highlights of Linear Algebra

In our example, each Ax is a vector in 3-dimensional space. That 3D space is called R3.

(The R indicates real numbers. Vectors with three complex components lie in the space C3.)

We stay with real vectors and we ask this key question :

All combinations Ax = x1a1 + x2a2 produce what part of the full 3D space ?

Answer : Those vectors produce a plane. The plane contains the complete line in the direction of

a1 = (2, 2, 3), since every vector x1a1 is included. The plane also includes the infinite line of

all vectors x2a2 in the direction of a2. And it includes the sum of any vector on one line plus

any vector on the other line. This addition fills out an infinite plane containing the two lines.

But it does not fill out the whole 3-dimensional space R3 :

Definition The combinations of the columns fill out (“span”) the column space of A.

Here the column space is a plane. That plane includes the zero point (0, 0, 0) which is produced

when x1 = x2 = 0. The plane includes (5, 6, 10) = a1 + a2 and (−1,−2,−4) = a1 − a2.

With probability 1 it does not include the random point rand(3, 1) ! Which points are in the plane ?

b = (b1, b2, b3) is in the column space of A exactly when Ax = b has a solution (x1, x2)

When you see that truth, you understand the column space C(A) : The solution x shows how to

express the right side b as a combination x1a1+x2a2 of the columns. For some b this is impossible.

Example 2 b =





1
1
1



 is not in C(A) because Ax =





2x1 + 3x2

2x1 + 4x2

3x1 + 7x2



 =





1
1
1



 is unsolvable.

The first two equations force x1 = 1

2
and x2 = 0. Then equation 3 fails : 3

(

1

2

)

+7(0)=1.5 (not 1).

This means that b = (1, 1, 1) is not in the column space—the plane of a1 and a2.

Example 3 What are the column spaces of A2 =





2 3 5
2 4 6
3 7 10



 and A3 =





2 3 1
2 4 1
3 7 1



 ?

Solution. The column space of A2 is the same plane as before. The new column (5, 6, 10) is the

sum of column 1 + column 2. So a3 = column 3 is already in the plane and adds nothing new.

By including this “dependent” column we don’t go beyond the original plane C(A).
The column space of A3 is the whole 3D space R3. Example 2 showed us that the new third

column (1, 1, 1) is not in the plane C(A). Our column space C(A3) has grown bigger. But there is

nowhere to stop between a plane and the full 3D space. Visualize the x− y plane and a third vector

(x3, y3, z3) out of the plane (meaning that z3 6= 0). They combine to give every vector in R3.

Here is a total and exclusive list of all possible column spaces inside R3. Dimensions 0, 1, 2, 3 :

Subspaces of R3 The zero vector (0, 0, 0) by itself

A line of all vectors x1a1

A plane of all vectors x1a1 + x2a2

The whole R3 with all vectors x1a1 + x2a2 + x3a3

In that list we need the vectors a1,a2,a3 to be “independent”. The only combination that gives the

zero vector is 0a1 + 0a2 + 0a3. So a1 by itself gives a line, a1 and a2 give a plane, a1 and a2 and

a3 give every vector b in R3. The zero vector is in every subspace ! In linear algebra language :

• Three independent columns in R3 produce an invertible 3× 3 matrix : AA−1 = A−1A = I.

• Ax = 0 requires x = (0, 0, 0). Ax = b has exactly one solution x = A−1b for every b.

You see the picture for the columns of an n by n invertible matrix. Their combinations fill all of Rn.

Then the n rows will also be independent. We needed those ideas and that language to go further.
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Problem Set I.1

1 Give an example where a combination of three nonzero vectors in R4 is the zero vector.

Then write your example in the form Ax = 0. What are the shapes of A and x and 0 ?

2 Suppose a combination of the columns of A equals a different combination of those columns.

Write that statement as Ax = Ay. Find a combination of the columns of A that equals the

zero vector (in matrix language, find a solution to Az = 0). Then find a second solution z2.

3 (Practice with subscripts) The vectors a1,a2, . . . ,an are in m-dimensional space Rm, and

a combination c1a1 + · · · + cnan is the zero vector. That statement is at the vector level.

(1) Write that statement at the matrix level. Use the matrix A with the a’s in its columns

and use the column vector c = (c1, . . . , cn).

(2) Write that statement at the scalar level using subscripts and sigma notation to add up

numbers. The column vector aj has components a1j , a2j , . . . , amj .

4 Suppose A is the 3 by 3 matrix ones(3, 3) of all ones. Find two independent vectors x and y

that solve Ax = 0 and Ay = 0. Write that first equation Ax = 0 (with numbers) as a com-

bination of the columns of A. Why don’t I ask for a third independent vector with Az = 0 ?

5 The linear combinations of v = (1, 1, 0) and w = (0, 1, 1) fill a plane in R3.

(a) Find a vector z that is perpendicular to v and w. Then z is perpendicular to every vector

cv + dw on the plane : (cv + dw)Tz = cvTz + dwTz = 0 + 0.

(b) Find a vector u that is not on the plane. Check that uTz 6= 0.

6 In the xy plane mark all nine of these linear combinations:

c

[

2
1

]

+ d

[

0
1

]

with c = 0, 1, 2 and d = 0, 1, 2.

7 If three corners of a parallelogram are (1, 1), (4, 2), and (1, 3), what are all three of the

possible fourth corners? Draw two of them.

8 Draw two vectors v and w coming out from the center point (0, 0).

(a) Mark the points 1

2
v + 1

2
w and 1

4
v + 1

4
w.

(b) Draw a line containing all the points cv + (1− c)w (all c).

(c) Draw the “cone” of all combinations cv + dw with c ≥ 0 and d ≥ 0.

9 How many corners does a cube have in 4 dimensions ? How many 3D faces ?

How many edges ? An edge goes between two adjacent corners.

10 Describe the column space of A = [v w v + 2w]. Describe the nullspace of A : all vectors

x = (x1, x2, x3) that solve Ax = 0. Add the “dimensions” of that plane and that line :

dimension of column space +++ dimension of nullspace === number of columns

11 Suppose the column space of an m by n matrix is all of R3. What can you say about m ?

What can you say about n ?
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I.2 Matrix-Matrix Multiplication AB

Inner products (rows times columns) produce each of the numbers in AB = C :

row 2 of A

column 3 of B

give c23 in C





· · ·

a21 a22 a23

· · ·









· · b13
· · b23
· · b33



 =





· · ·

· · c23
· · ·



 (1)

That dot product c23 = (row 2 of A) ··· (column 3 of B) is a sum :

c23 = a21 b13 + a22 b23 + a23 b33 =

3
∑

k=1

a2k bk3 and cij =

n
∑

k=1

aik bkj . (2)

This is how we usually compute each number in AB = C.

There is another way to multiply AB : columns of A times rows of B. We need to see this !

I start with numbers to make two key points : one column u times one row vT produces a matrix.

Concentrate first on that piece of AB. This matrix uvT is especially simple :

Outer

product
uv

T =





2
2
1





[

3 4 6
]

=





6 8 12
6 8 12
3 4 6



 =
“rank one

matrix”

An m by 1 matrix (a column u) times a 1 by p matrix (a row vT) gives an m by p matrix.

Notice what is special about the rank one matrix uvT :

All columns of uvT are multiples of u =





2
2
1



 . All rows are multiples of vT =
[

3 4 6
]

.

The column space of uvT is one-dimensional : the line in the direction of u. The dimension of

the column space (the number of independent columns) is the rank of the matrix—a key number.

All nonzero matrices uvT have rank one. They are the perfect building blocks for every matrix.

Notice also : The row space of uvT is the line through v. By definition, the row space of any

matrix A is the column space C(AT) of its transpose AT. That way we stay with column vectors.

In the example, we transpose uvT (exchange rows with columns) to get the matrix vuT :

(uvT)T =





6 8 12
6 8 12
3 4 6





T

=





6 6 3
8 8 4

12 12 6



 =





3
4
6





[

2 2 1
]

= vu
T
.

We are seeing the clearest possible example of the first great theorem in linear algebra :

Row rank = Column rank r independent columns ⇔ r independent rows

A nonzero matrix uvT has one independent column and one independent row ! All columns are

multiples of u and all rows are multiples of vT. The rank is r = 1 for this matrix.



I.2. Matrix-Matrix Multiplication AB 5

AB = Sum of Rank One Matrices

We turn to the full product AB, using columns of A times rows of B. Let a1,a2, . . . ,an

be the columns of A. Let b∗1, b
∗

2, . . . , b
∗

n be the rows of B. Notice the same number n (or we

couldn’t multiply A times B). Then the product AB is the sum of columns ak times rows b∗k :

Column-row multiplication of matrices

AB =







| |

a1 . . . an

| |













—– b∗1 —–
.
..

—– b∗n —–






= a1 b

∗

1 + a2 b
∗

2 + · · ·+ an b∗n. (3)

Here is a 2 by 2 example to show the n = 2 pieces (column times row) and their sum AB :

[

1 0
3 1

] [

2 4
0 5

]

=

[

1
3

] [

2 4
]

+

[

0
1

] [

0 5
]

=

[

2 4
6 12

]

+

[

0 0
0 5

]

=

[

2 4
6 17

]

. (4)

Can you count the multiplications of number times number ? Four multiplications to get 2, 4, 6, 12.

Four more to get 0, 0, 0, 5. A total of 23 = 8 multiplications. Always there are n3 multiplications

when A and B are n by n. And mnp multiplications when AB = (m by n) times (n by p) :

n rank one matrices, each of those matrices is m by p.

The count is the same for the usual inner product way ! Row of A times column of B needs

n multiplications. We do this for every number in AB : mp dot products when AB is m by p.

The total count is again mnp for (m by n) times (n by p).

mp inner products, n multiplications each OR n outer products, mp multiplications each

When you look closely, they are exactly the same multiplications aik bkj in different orders.

Here is the algebra proof that cij is the same by outer products in (3) as by inner products in (2) :

The i, j entry of akb
∗

k is aikbkj . Add for k = 1 to n. Then cij =
n
∑

k=1

aik bkj = row i ··· column j.

Insight from Column times Row

Why is the outer product approach essential in data science ? The short answer is : We are looking

for the important part of a matrix C. We don’t usually want the biggest number in C (though that

could be important). What we want more is the largest piece of C. And those pieces are rank one

matrices uvT. A dominant theme in applied linear algebra is :

Factor C into AB and look at the pieces akb
∗

k of AB = C.

Factoring C into AB is the reverse of multiplying AB = C. Factoring takes longer, especially if

the pieces involve eigenvalues or singular values. But those numbers have inside information about

the matrix C. That information is not visible until you factor.
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Here are five important factorizations, written with the standard choice of letters (usually A,

not C) for the original product matrix and then for its factors. This book will explain all five.

A = LU A = QR S = QΛQT A = XΛX−1 A = UΣV T

At this point we simply list key words and properties for each of these factorizations.

1 A = LU comes from elimination. Combinations of rows take A to U and U back to A

L is lower triangular and U is upper triangular as in equation (4)

2 A = QR comes from orthogonalizing the columns a1 to an as in “Gram-Schmidt”

Q has orthonormal columns (QTQ = I) and R is upper triangular

3 S = QΛQT comes from the eigenvalues λ1, . . . , λn of a symmetric matrix S = ST

Eigenvalues on the diagonal of Λ and orthonormal eigenvectors in the columns of Q

4 A = XΛX−1 is diagonalization when A is n by n with n independent eigenvectors

Eigenvalues of A are on the diagonal of Λ. Eigenvectors of A are in the columns of X

5 A = UΣV T is the Singular Value Decomposition of any matrix A (square or not)

The singular values σ1, . . . , σr are in Σ. The orthonormal singular vectors are in U and V

Let me pick out a favorite (number 3) to illustrate the idea. This special factorization QΛQT

starts with a symmetric matrix S. That matrix has orthogonal unit eigenvectors q
1
, . . . , qn. Those

eigenvectors go into the columns of Q. S and Q are the kings and queens of linear algebra :

Symmetric matrix S ST = S when all sij = sji

Orthogonal matrix Q QT = Q−1 when all qi · qj =

{

0 for i 6= j

1 for i = j

The diagonal matrix Λ contains real eigenvalues λ1 to λn. Every real symmetric matrix S has n

orthonormal eigenvectors q
1

to qn. When multiplied by S, they keep the same direction :

Eigenvector q and eigenvalue λ Sq = λq (5)

Finding λ and q is not easy for a big matrix. But n pairs always exist when S is symmetric.

Our purpose here is to see how SQ = QΛ comes column by column from Sq = λq :

SQ = S







q
1

. . . qn






=







λ1q1
. . . λnqn






=







q
1

. . . qn













λ1

. . .

λn






= QΛ (6)

Multiply SQ = QΛ by Q−1 = QT to get S = QΛQT = a symmetric matrix. Each eigenvalue λk

and each eigenvector qk contribute a rank one piece λkqkq
T

k to S.

Always symmetric (QΛQT)T = Q
TTΛT

Q
T = QΛQT (diagonal ΛT = Λ) (7)

Rank one pieces S = (QΛ)QT = (λ1q1
)qT

1
+ (λ2q2

)qT

2
+ · · ·+ (λnqn)q

T

n (8)

Please notice that the columns of QΛ are λ1q1
to λnqn. When you multiply a matrix on the right by

the diagonal matrix Λ, you multiply its columns by the λ’s.




