
18.075 - Solution set 4: About solving PDEs to preserve chocolate

and make nice music

1 The insulating properties of a cylinder (60 pts)

With θ, the differential equation becomes

∂t̃θ − ∂r̃r̃θ −
1
r̃
∂r̃θ = − ˙̃

eT, θ(r̃ = 1, t) = 0 (1)

The homogeneous part is solved by posing θ(r̃, t̃) = α(t̃) · β(r̃), so

α̇

α
=
β̈

β
+

β̇

rβ
= −λ2

Solving both ODE yields α = c1e
−λ2 t̃ and β = c2J0(λr̃)+c3Y0(λr̃). The radial part β should remain

finite in r = 0, so c3 = 0. The other boundary condition leads to

J0(λn) = 0

The non-homogeneous equation is solved by posing

θ =
∞∑
n=1

cn(t)J0(λnr̃)

Substituting back into the PDE and making use of the homogeneous equation yields
∞∑
n=1

[ċn + λ2
ncn]J0(λnr̃) = − ˙̃

eT

Then, we project the equation on J0(λmr̃):

∞∑
n=1

[ċn + λ2
ncn]

∫ 1

0
r̃J0(λnr̃)J0(λmr̃)dr̃ = − ˙̃

eT

∫ 1

0
r̃J0(λmr̃)dr̃

Using the identities seen in class for the integrals of bessel functions, we finally obtain

ċm + λ2
mcm = − 2 ˙̃

eT

λmJ1(λm)

When the external forcing temperature is Te(t) = T0[1 + γ sin(ωt)], ˙̃
eT = γω̃ cos(ω̃t̃). We guess

the solution cm = am sin(ω̃t̃) + bm cos(ω̃t̃), then we substitute back into the ODE for cm and match
the coefficients of the trig functions, so

cm(t̃) =
−2γω̃

λmJ1(λm)[ω̃2 + λ4
m]

[
ω̃ sin(ω̃t̃) + λ2

m cos(ω̃t̃)
]
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Figure 1: Damping factor δ as a function of ω̃

On the axis of the cylinder,

T̃ (0, t̃) = T̃e(t̃) + θ(0, t̃) = T̃e +
∞∑
n=0

cn(t̃)

The function T̃ (0, t̃) is computed numerically. It is a sinusoid of amplitude δγ, where δ is defined as
a kind of damping factor, measuring how dampened is the external thermal oscillation within the
cylinder. Thid damping factor is shown in Fig.1 as a function of ω̃.

In order to get δ < 0.1 (10%), we should have ω̃ > 34.24. The numerical application gives
ω = 2π/86400 rad/s, so R should be greater than 19.4cm.

2 The sound of timpani (40 pts)

As suggested, we calculate the natural frequencies of a square elastic membrane. The deflection
w(t, x, y) of the membrane obeys the wave equation

c2∇2w = ∂ttw

where c is related to the physical properties of the membrane (tension, density). The boundary
conditions are w = 0 along all edges.

We seek a solution w(x, y, t) = X(x) · Y (y) · T (t), so

Ẍ

X
+
Ÿ

Y
=

1
c2
T̈

T

Every fraction should be constant, and only trig functions can be involved for the spatial parts X
and Y because of the boundary conditions. So

Ẍ

X
= −α2 ⇒ X = A sin(αmx), where αm =

mπ

L
,m ∈ N

Ÿ

Y
= −β2 ⇒ Y = B sin(βny), where βn =

nπ

L
, n ∈ N
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then
T̈

T
= −c2(α2

m + β2
n)⇒ T = C1 cosωmnt+ C2 sin(ωmnt)

where
ωmn =

πc

L

√
m2 + n2 = ω0

√
m2 + n2

The frequencies of the various eigenmodes are not integer multiples of a fundamental frequency, so
they cannot be called harmonics. The resulting signal w(x, y, t) is not periodic in time, unless only
a finite number of modes are selected. The sound created by squared timpani is not nice to hear, it
looks like a noise, it cannot be related to a note.

On the other side, as seen in class, round timpani generate a nice sound, where all the natural
frequencies are multiple of a fundamental frequency, so a note is heard. The note depends on the
size and the tension in the membrane.
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