
18.075 - Pset 3: Solutions

1 A first set of waves

These waves are called Yanai waves, or also mixed Rossby-gravity equatorial waves.

(a) Substituting (u, v, η) = [U(y), V (y), E(y)]ei(kx−ωt) into the set of equations leads to

−iωU = βyV − ig′kE (1)
−iωV = −βyU − g′Ė (2)
−iωE = −h(ikU + V̇ ) (3)

To remove U from (1) and (2), we should multiply (1) by βy and (2) by iω, so

(β2y2 − ω2)V = ig′(βkyE + ωĖ) (4)

To remove E from (1) and (2), we should differentiate (1) and multiply (2) by −ik, so

−(β + kω)V − βyV̇ = i(βkyU + ωU̇) (5)

Since both (4) and (5) involve the operator (ωd/dy+ βky), we apply this operator to the third
equation:

−iω(βkyE+ωĖ) = −ihk(βkyU+ωU̇)−h(βkyV̇+ωV̈ )⇒ V̈+
(
ω2 − β2y2

g′h
−βk
ω
−k2

)
V = 0 (6)

(b)
d2V

dỹ2
+
(
ω̃2 − ỹ2 − k̃2 − k̃

ω̃

)
V = 0

(c)
dV

dỹ
=
(

Φ̇− ỹΦ
)
e−ỹ

2/2

d2V

dỹ2
=
(

Φ̈− 2ỹΦ̇− (1− ỹ2)Φ
)
e−ỹ

2/2

so

Φ̈− 2ỹΦ̇ +
(
ω̃2 − k̃2 − k̃

ω̃ − 1

)
︸ ︷︷ ︸

2ν

Φ = 0

This differential equation is called the Hermite equation.
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(d) We seek solutions of the form

Φ =
∞∑
k=0

Akỹ
k+s

so

ỹΦ̇ =
∞∑
k=0

Ak(k+s)ỹk+s, Φ̈ =
∞∑
k=0

Ak(k+s)(k+s−1)ỹk+s−2 =
∞∑

k=−2

Ak+2(k+s+2)(k+s+1)ỹk+s

and

A0s(s− 1)ỹs−2 +A1(s+ 1)sỹs−1 +
∞∑
k=0

[
(k + s+ 2)(k + s+ 1)Ak+2 + 2(ν − k − s)Ak

]
ỹk+s = 0

We expect two independent solutions for this second order equation. So in order to remove the
terms in ỹs−2 and ỹs−1, we can either set s = 0 and keep both A0 6= 0 and A1 6= 0, or set s = 1
(resp. s = −1) and A1 = 0 (resp. A0 = 0). Let’s choose the first option: s = 0 and A0 6= 0,
A1 6= 0. Canceling the coefficients of ỹs+k leads to the recurrence relation

Ak+2 =
2(k − ν)

(k + 2)(k + 1)
Ak, k ∈ N+

(e) If ν /∈ N and A0 6= 0 (resp. A1 6= 0), all the coefficients A2k (resp. A2k+1) are different from 0.
If we set 2n = k, the even solution (A1 = A2k+1 = 0) can be written as

Φ =
∞∑
n=0

Anỹ
2n, where An+1 =

2n− ν
(2n+ 1)(n+ 1)

An

Suppose that |An| > |Bn| for some large value of n. Then,

|An+1| =
|2n− ν|

(2n+ 1)(n+ 1)
|An| >

|2n− ν|
(2n+ 1)(n+ 1)

|Bn| =
2|2n− ν|

2n+ 1
|Bn+1|

Since for large n, (2n − ν)/(2n + 1) → 1, |An+1| > 2|Bn+1| > |Bn+1|. This means that, as
ỹ → ∞, Φ grows faster than eỹ

2/2, so there is no hope that the solution V = Φe−ỹ
2/2 remains

finite far away from the equator. So this solution CANNOT BE PHYSICALLY OBSERVED.

(f) Things change when ν ∈ N. Now, the coefficients can be zero as soon as k = ν. Since k is
incremented by 2 in the recurrence relation, we should distinguish even and odd values of ν.
When ν is even (resp. odd), there are only (ν + 1)/2 (resp. (ν + 2)/2) non-zero even (resp.
odd) coefficients. To avoid a blow-up of the solution in ỹ →∞, we set A1 = 0 (resp. A0 = 0).
The solution Φ is therefore an even (resp. odd) polynomial Hν of degree ν in ỹ, called Hermite
polynomial. We are now ensured that V vanishes far from the equator because the decreasing
behavior of the exponential dominates the increasing behavior of the polynomial. A consequence
of this is that the waves must remain close to the equator, they vanish as soon as ỹ is of the
order of unity, which means for distances about R ∼ 250km from the equator. The five first
Hermite polynomials are

H0(ỹ) = 1, H1(ỹ) = ỹ, H2(ỹ) = 1− 2ỹ2, H3(ỹ) = ỹ − 2
3
ỹ3, H4(ỹ) = 1− 4ỹ2 +

4
3
ỹ4

We can also show that the Hermite polynomials are orthogonal to each other, which means that
they can serve as a base to represent waves initially composed of many wavenumbers k̃ (cf. Pset
2).
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(g) The dispersion relation is therefore

ω̃2 − k̃2 − k̃

ω̃
= 2ν + 1

where ν ∈ N. Although it is almost impossible to find an explicit expression ω̃(k̃), we can find
k̃(ω̃) much more easily:

k̃ =
−1±

√
1− 4(2ν + 1)ω̃2 + 4ω̃4

2ω̃

For ν = 0, considering that ω̃ = −k̃ is a spurious solution, the quadratic equation reduces to

k̃(ν=0) = ω̃ − 1
ω̃

which is a branch monotonically increasing from ω̃ = 0 in k̃ → −∞ to ω̃ ∼ k̃ in k̃ → +∞, and
passing through the point (k̃, ω̃) = (0, 1).

For ν > 0, the square root in our expression of k̃ is not defined for

ω ∈
[√

ν + 0.5−
√
ν(ν + 1),

√
ν + 0.5 +

√
ν(ν + 1)

]
At the boundary points, dω̃/dk̃ = 0. The curves are shown in Fig.1. The group velocity goes
westwards when dω̃/dk̃ < 0 and eastwards when dω̃/dk̃ > 0. The lower branch corresponds to
Rossby waves while the upper branch corresponds to Poincare waves.

2 The Kelvin waves

(a) The system leads to

U =
g′k

ω
E =

ω

kh
E and Ė +

βk

ω
yE = 0

From the first equation, we find the dispersion relation ω =
√
g′hk, or in dimensionless form

ω̃ = k̃.

(b) The equation for E yields
Ė +

y

R2
E = 0⇒ E = E0e

−(y/R)2

Note that, if the dispersion relation ω = −
√
g′hk is considered, then the equation for E is

Ė − y

R2
E = 0⇒ E = E0e

(y/R)2

which does not vanish in y → ±∞. That’s the reason for which ω̃ = −k̃ is a spurious solution
of the system.

3 Applications

(a) On these figures, the abscissa is k, the zonal wavenumber and the ordinate is ω, the frequency
of the waves. The curves on these figures correspond to the dispersion relation of the equatorial
waves, that we have just calculated. On the left figure are represented the waves that are
symmetric in y, i.e. the Kelvin waves and the Rossby-gravity waves when ν is even (so the
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polynomial is even as well). On the right figure are represented the waves that are antisymmetric
in y, so the Rossby-gravity waves when ν is odd. Different curves are drawn for a same mode,
since it depends on the relatively unknown depth h of the upper layer. According to the
experimental data, the Kelvin waves and the Rossby-gravity waves with ν = 0 or 1 are the
main waves encountered in the equatorial Pacific.

(b) The group velocity of a Kelvin wave is dω/dk =
√
g′h ∼ 1.4m/s. Indonesia is about 150oE

and Peru about 80oW, so the distance between both is about (130/360)2πRe ' 14500km. So
it takes about 4 months to the Kelvin wave to propagate from Indonesia to Peru. That’s why
fishing in Peru is affected around Christmas time, so the name “El Niño”...
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