
18.075 - Pset 2: Solutions

1 A method for integrating exponential of functions

This method is known under the name “Method of steepest descent” or “saddle-point approxima-
tion”, and is often encountered in physics (e.g. in statistical mechanics).

(a) Suppose that the N maxima are located in x = xn, n ∈ [1, N ]. Then the integral becomes

I(λ) '
N∑
n=1

eλf(xn)

√
2π

−λf ′′(xn)

Nevertheless, if the maxima have different values f(xn), then only the largest needs to be
considered for the approximation. For example, with λ = 20 and f(x2) = 0.8f(x1), the term in
x2 will be about 50 times smaller than the term in x1.

(b)

Γ(λ) =
∫ +∞

0
zλ−1e−zdz =

∫ +∞

0
e−z+(λ−1) ln(z)dz

So we can write λf(z) = (λ − 1) ln z − z. f(z) is maximum in z = λ − 1, so λf(λ − 1) =
(λ− 1)[ln(λ− 1)− 1] and f ′′(λ− 1) = −1/(λ− 1). By using the approximation formula, we get

Γ(λ) ' e(λ−1)[ln(λ−1)−1]
√

2π(λ− 1) =
√

2π(λ− 1)(λ−1/2)e−(λ−1)

If λ = N + 1 ∈ N, then

N ! = Γ(N + 1) '
√

2πN
(
N

e

)N
so

ln(N !) ' N ln
(
N

e

)
+

1
2

ln(2πN)

for large N . This formula, known as Stirling formula, is very accurate, even for relatively small
values of N . Indeed, for N = 10, N ! = 3628800 while its approximation is 3598695, so the
relative error is about 0.8%!

(c) The integrand looks like
eλu(x,y)eiλv(x,y)

so the main contribution to the integral is expected when the argument of the real exponential
is maximum. But that’s not all... Suppose that this maximum occurs in z0, in a region where
v(x, y) is varying a lot. Then, some of the contributions around z0 will have eiλv(x,y) > 0 while
others will have eiλv(x,y) < 0. So all these contributions might balance each other if v(x, y) is
not relatively constant, and the approach of neglecting every contribution far away from the
maximum is not valid anymore.
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(d) According to the Cauchy-Riemann equations, ∂xv = −∂yu and ∂yv = ∂xu so every point
where ~∇u = 0 is also a point where ~∇v = 0. For the second derivative, ∂x(∂xu) = ∂x(∂yv)
and ∂y(∂yu) = −∂y(∂xv). So the trace of the Hessian matrix is ∂xxu + ∂yyu = 0, and the
corresponding eigenvalues can only have opposite signs. Every point where ~∇u = 0 is therefore
a saddle. The same holds for v.

(e) The Taylor series around z0 writes

f(z) = f(z0) +
1
2
s2ρei(2θ+ϕ)

so u(x, y) = u(x0, y0) + 1
2s

2ρ cos(2θ + ϕ) and v(x, y) = v(x0, y0) + 1
2s

2ρ sin(2θ + ϕ). Since we
want v to be constant and u to be maximum around (x0, y0), we need 2θ + ϕ = π, so

θ =
π − ϕ

2
and locally, on the best path,

f(z) = f(z0)− 1
2
s2ρ

(f) The integral becomes

I(λ) ' eλf(z0)

∫
C
e−

λρs2

2 dz

We can extend our local path in s to infinity on both sides, and say that dz = eiθds so

I(λ) ' eλf(z0)

∫ +∞

−∞
e−

λρs2

2 ei
π
2 e−i

ϕ
2 ds = ieλf(z0)

√
2π

λ|f ′′(z0)|
e−i

ϕ
2 = eλf(z0)

√
2π

−λf ′′(z0)

2 The linear and forced Korteweg-de Vries equation

(a) By substituting Laplace transforms of both f and h in the differential equation, we obtain∫ +∞

−∞

[
(−iω0 + αik − βik3)H(k)− F (k)

]
ei(kx−ω0t)dk = 0

so
H(k) =

F (k)
i(αk − βk3 − ω0)

=
F (k)

i[Ω(k)− ω0]

(b) The integrand blows up for Ω(kn) = ω0. The graph of Ω(k) is shown in Fig.1. It’s a cubic func-
tion with three zeros in −

√
α/β, 0 and

√
α/β, separated by one minimum and one maximum.

So for every ω0 > 0, we expect at least one negative value k1. Two positive values k2 and k3

are also obtained as long as ω2
0 < 4α3/(27β).

(c) Now, the singularities k̃n obey to

ω0 + iε = Ω(k̃n) = Ω(kn + iδ) ' Ω(kn) + iδΩ′(kn)

so
δ =

ε

cg(kn)

The sign of δ is thus given by the sign of cg(kn) = Ω′(kn). Therefore, both the first and the
third roots move below the real axis while only the second root k̃2 is now located above the real
axis.
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(d) In order to use the Cauchy’s residue theorem, we should find a contour on which the exponential
eikx goes to 0 as x→∞ or x→ −∞. On the semi-circle above (resp. below) the real axis, the
imaginary part of k is positive (resp. negative), so the corresponding exponential vanishes (resp.
blows up) as x → +∞ and blows up (resp. vanishes) as x → −∞. Therefore, the semi-circle
above works for x→ +∞ and the semi-circle below for x→ −∞.

(e) As k̃2 is the only singularity inside the upper semi-circle, we need to calculate the residual in
k̃2, which is a single pole:

Res(k̃2) = lim
k→k̃2

F (k)ei(kx−ω0t)(k − k̃2)
i[Ω(k)− ω0 − iε]

=
F (k̃2)ei(k̃2x−ω0t)

iΩ′(k̃2)

Since the integral on the circular part of the contour vanishes as x→∞,

lim
x→∞

h̃(x, t) = −2πiRes(k̃2) = −2π
F (k̃2)ei(k̃2x−ω0t)

Ω′(k̃2)

The solution h(x, t) of Eq.(1) is obtained by taking the limit for ε→ 0, so

lim
x→∞

h(x, t) = −2πiRes(k2) = −2π
F (k2)ei(k2x−ω0t)

Ω′(k2)

3 Waves in the wake of a ship (25 pts)

(a) The integral that gives h(~x, t) involves the exponential of a function of s, and the argument
of this exponential goes to infinity as ~x does. So we can use the method of steepest descent
established in problem 1 to approximate the integral. To do so, we should ensure that the
imaginary part of the exponential is constant, so we want Ψ(s) = ~k(s) · ~d to be constant.

dΨ
ds

=
d~k

ds
· ~d = 0

But since d~k/ds is already perpendicular to ~cg(~k), we deduce that ~cg(~k) is parallel to ~d. In other
words, only the wavenumbers ~k(s) for which the group velocity ~cg[~k(s)] is parallel to ~d will be
observed in ~x. This result generalizes what was shown in Problem 2 (only the singularities for
which cg has the same sign as x have to be taken into account).

(b) The group velocity is given by

~cg = ~∇~kΩ =
(√

gk1

2k3/2
− V,

√
gk2

2k3/2

)
=
V

2

(
cos2 θ − 2, sin θ cos θ

)
The direction of ~cg makes an angle ϕ with the direction of the ship, where

tanϕ =
sin θ cos θ
cos2 θ − 2

By differentiating tanϕ according to θ, we can show that the maximum value of tanϕ occurs
for cos θ =

√
2/3, from which we deduce sinϕ = 1/3, so ϕ = 19.5o. Since the waves are only

observed in the directions taken by ~cg, no waves are observed outside the cone of half-angle
19.5o.
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