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20. MORE ON FOURIER SERIES

The Mathlet Fourier Coefficients displays many of the effects
described in this section.

20.1. Symmetry and Fourier series. A function ¢(¢) is even if
9(t) = g(~t), and odd if g(t) = —g(—t).

Fact: Any function f(t) is a sum of an even function and an odd
function, and this can be done in only one way.

The even part of f(t) is

oy = H0 S0
and the odd part is
= HO=I

It’s easy to check that fi(t) is even, f_(t) is odd, and that
ft) = f(@) + f-(1).

We can apply this to a periodic function. We know that any periodic
function f(t), with period 27, say, has a Fourier expansion of the form

% + ;(an cos(nt) + by, sin(nt)).
If f(t) is even then all the b,’s vanish and the Fourier series is simply

% + ; a, cos(nt).

If f(t) is odd then all the a,’s vanish and the Fourier series is

Z by, sin(nt).
n=1

Most of the time one is faced with a function which is either even or
odd. If f(t) is neither even nor odd, we can still compute its Fourier
series by computing the Fourier series for f(¢) and f_(t) separately
and adding the results.
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20.2. Symmetry about other points. More general symmetries are
often present and useful. A function may exhibit symmetry about
any fixed value of t, say t = a. We say that f(t) is even about a if
fla+t) = f(a—1t) for all t. 1t is odd about a if f(a+t) = —f(a —1).
f(t) is even about a if it behaves the same as you move away from a
whether to the left or the right; f(¢) is odd about a if its values to the
right of a are the negatives of its values to the left. The usual notions
of even and odd refer to a = 0.

Suppose f(t) is periodic of period 27, and is even (about 0). f(t)
is then entirely determined by its values for ¢ between 0 and 7. When
we focus attention on this range of values, f(¢) may have some further
symmetry with respect to the midpoint 7/2: it may be even about /2
or odd about 7/2, or it may be neither. For example, cos(nt) is even
about /2 exactly when n is even, and odd about 7/2 exactly when
n is odd. It follows that if f(¢) is even and even about 7/2 then its
Fourier series involves only even cosines:

f(t) = % + Z a, cos(nt).

If f(t) is even about 0 but odd about 7/2 then its Fourier series involves
only odd cosines:

ft) = Z a, cos(nt).

n odd

Similarly, the odd function sin(nt) is even about /2 exactly when n
is odd, and odd about 7/2 exactly when n is even. Thus if f(¢) is odd
about 0 but even about /2, its Fourier series involves only odd sines:

f(t) = Z by, sin(nt).

n odd

If it is odd about both 0 and 7/2, its Fourier series involves only even

| ft) = Z a, sin(nt).

n even

20.3. The Gibbs effect. The Fourier series for the odd function of
period 27 with

F(z) = T for0<az<n

18

Flz) = Z sin;kx) '

k=1
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In Figure [I2] we show the partial sum
" sin(kx)
Fo(z) =) —
k=1

with n = 20 and in Figure [13| we show it with n = 100. The horizontal
lines of height +7/2 are also drawn.
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FIGURE 13. Fourier sum through sin(100x)

Notice the “overshoot” near the discontinuities. If you graph F, ()
for n = 1000 or n = 10°, you will get a similar picture. The spike near
x = 0 will move in closer to x = 0, but won'’t get any shorter. This is
the “Gibbs phenomenon.” We have F(0+) = /2, but it seems that
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for any n the partial sum F,, overshoots this value by a factor of 18%
or so.

A little experimentation with Matlab shows that the spike in F,,(x)
occurs at around x = xg/n for some value of zy independent of n. It
turns out that we can compute the limiting value of F,(zo/n) for any
Zo-

Claim. For any x,
xo t
lim 7, (%) :/ Snt g
n—00 n 0 t

To see this, rewrite the sum as
( > Zsm (kxo/n) xg
kxo/n n

Using the notation

this is
o u k’.TO To
Fn<n>_;‘f( n ) n
You will recognize the right hand side as a Riemann sum for the func-
tion f(t), between t = 0 and t = x. In the limit we get the integral,
and this proves the claim.

To find the largest overshoot, we should look for the maximal value
sint

xo t
of / % dt. Figure [14] shows a graph of —
0

The integral hits a maximum when xg = 7, and the later humps are
smaller so it never regains this size again. We now know that

lim F, / Sl—ntdt

n—o0

The actual value of this definite integral can be estimated in various
ways. For example, the power series for sint is
VA
smt—t—§—|—5—~'.

Dividing by ¢ and integrating term by term,

o sint x3 xd
_dt:x — 0 —|— 0 — e e,
/0 t 3.3 " 5.5
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Take xy = m. Pull out a factor of 7/2, to compare with F(0+) = 7/2:

m .. t
/ Mru=-I.q,
.1 2

72 m
G=2(1- — e ]
( 3.3 5.5 )
The sum converges quickly and gives

G = 1.17897974447216727 . . ..

We have found, on the graphs of the Fourier partial sums, a sequence
of points which converges to the observed overshoot:

(an (%)) = (0,(1.1789..) g)

that is, about 18% too large. As a proportion of the gap between
F(0—) = —7/2 and F(0+) = +7/2, this is (G — 1)/2 = 0.0894... or
about 9%. It can be shown that this is the highest overshoot.

where

The Gibbs overshoot occurs at every discontinuity of a piecewise
continuous periodic function F'(x). Suppose that F'(z) is discontinuous
at * = a. The overshoot comes to the same 9% of the gap, F(a+) —
F(a—), in every case.

Compare this effect to the basic convergence theorem for Fourier
series:
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Theorem. If F(z) is piecewise continuous and periodic, then for any

fixed number a the Fourier series evaluated at © = a converges to

F(a+) + F(a—) .
5 in

F(a) if F(z) is continuous at a, and to the average

general.

The Gibbs effect does not conflict with this, because the point at
which the overshoot occurs moves (it gets closer to the point of discon-
tinuity) as n increases.

The Gibbs effect was first noticed by a British mathematician named
Wilbraham in 1848, but then forgotten about till it was observed in the
output of a computational machine built by the physicist A. A. Michel-
son (known mainly for the Michelson-Morey experiment, which proved
that light moved at the same speed in every direction, despite the mo-
tion of the earth through the ether). Michelson wrote to J. Willard
Gibbs, the best American physical mathematician of his age and Pro-
fessor of Mathematics at Yale, who quickly wrote a paper explaining
the effect.

20.4. Fourier distance. One can usefully regard the Fourier coeffi-
cients of a function f(t) as the “coordinates” of f(t) with respect to a
certain coordinate system.

Imagine a vector v in 3-space. We can compute its z coordinate
in the following way: move along the x axis till you get to the point
closest to v. The value of z you find yourself at is the z-coordinate of
the vector v.

Similarly, move about in the (z,y) plane till you get to the point
which is closest to v. This point is the orthogonal projection of v into
the (z,y) plane, and its coordinates are the x and y coordinates of v.

Just so, one way to think of the component a,, cos(nt) in the Fourier
series for f(t) is this: it is the multiple of cos(nt) which is “closest” to
f(t).

The “distance” between functions intended here is hinted at by the
Pythagorean theorem. To find the distance between two points in
Euclidean space, we take the square root of the sum of squares of
differences of the coordinates. When we are dealing with functions
(say on the interval between —m and ), the analogue is

™ 1/2
1) dist( (1), g(1)) = (i JUE g<t>>2dt) .

2 ) .
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This number is the root mean square distance between f(t) and
g(t). The fraction 1/27 is inserted so that dist(1,0) = 1 (rather than
v27) and the calculations on p. 560 of Edwards and Penney show that
forn >0

1 1

—, dist(sin(nt),0) = —.

T dist(sin(on) 0) =

The root mean square distance between f(t) and the zero function is
called the norm of f(t), and is a kind of mean amplitude. The norm
of the periodic system response is recorded as “RMS” in the Mathlets
Harmonic Frequency Response and Harmonic Frequency Response
IT.

dist(cos(nt),0) =

One may then try to approximate a function f(t) by a linear combi-
nation of cos(nt)’s and sin(nt)’s, by adjusting the coefficients so as to
minimize the “distance” from the finite Fourier sum and the function
f(t). The Fourier coefficients give the best possible multiples.

Here is an amazing fact. Choose coefficients a,, and b, randomly to
produce a function g¢(¢). Then vary one of them, say a;, and watch
the distance between f(¢) and this varying function g(¢). This distance
achieves a minimum precisely when a; equals the coefficient of cos(7t)
in the Fourier series for f(t). This effect is entirely independent of the
other coefficients you have used. You can fix up one at a time, ignoring
all the others till later. You can adjust the coefficients to progressively
minimize the distance to f(¢) in any order, and you will never have to
go back and fix up your earlier work. It turns out that this is a reflection
of the “orthogonality” of the cos(nt)’s and sin(nt)’s, expressed in the
fact, presented on p. 560 of Edwards and Penney, that the integrals of
products of distinct sines and cosines are always zero.

20.5. Harmonic response. One of the main uses of Fourier series is
to express periodic system responses to general periodic signals. For
example, if we drive an undamped spring with a plunger at the end of
the spring, the equation is given by

mi + kx = kf(t)

where f(t) is the position of the plunger, and the z coordinate is ar-
ranged so that = 0 when the spring is relaxed and f(t) = 0. The
natural frequency of the spring/mass system is w = y/k/m, and divid-
ing the equation through by m gives

(2) i+ wir = wif(t).
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This equation is illustrated in the Mathlet Harmonic Frequency
Response.

An example is given by taking for f(t) the squarewave sq(t), the
function which is periodic of period 27 and such that

(t) = 1 for O0<t<m
A=Y 21 for —m<t<0

Its Fourier series is

(3) sq(t) = é (sin(t) + sinéSt) + SmSt) 4. > ]

The periodic system response to the term in the Fourier series for
w?sq(t)

2
w
— sin(nt)

(where n is an odd integer) is, by the Exponential Reponse Formula

(190,

4w?  sin(nt)
™m w?—n?’
Thus the periodic system response to f(t) = sq(t) is given by the

Fourier series
4w? [ sint sin(3t)
4 1) =

(4) Hlt) == (w2—1+3(w2—9)+ )

as long as w isn’t one of the frequencies of the Fourier modes of the
signal, i.e. the odd integers.

This expression explains important general features of the periodic
solution. When the natural frequency of the system, w, is near to one of
the frequencies present in the Fourier series for the signal (odd integers
in this example), the periodic system response x,, is dominated by the
near resonant response to that mode in the signal. When w is slightly
larger than (2k + 1) the system response is in phase; as w decreases
though the value (2k + 1), the system passes through resonance with
the signal (and when w = 2k + 1 there is no periodic solution), and
comes out on the other side in anti-phase.

In this example, and many others, however, the same solution can
be obtained quite easily using standard methods of linear ODEs, using
some simple features of the solution. These features can be seen directly
from the equation, but from our present perspective it’s easier to see
them from . They are:

2,(0) =0, z,(m) =0.
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I claim that as long as w isn’t an integer, has just one solution with
these properties. That solution is given as a Fourier series by , but
we can write it out differently using our older methods.

In the interval [0, 7], the equation is simply
&4 wir = w?.
We know very well how to solve this! A particular solution is given
by a constant, namely 1, and the general solution of the homogeneous
equation is given by a cos(wt) + bsin(wt). So

z, = 1+ acos(wt) + bsin(wt)
for some constants a, b.
Substituting ¢t = 0 gives a = —1, so
(5) xp, =1 — cos(wt) + bsin(wt), 0<t<m.
Substituting ¢t = 7 gives the value for b, depending upon w:

b cos(mw) — 1

sin(7w)
In the interval [—m, 0], the complete signal is —w?, so exactly the
same calculation gives the negative of the function just written down.
Therefore the solution z, is the odd function of period 27 extending

cos(mw) — 1

(6)  x,=1—cos(wt)+ ( ) sin(wt) , O<t<m.

sin(7mw)
The Fourier series of this function is given by , but I for one would
never have guessed that the expression summed up to such a simple
function.

Let’s finish up our analysis of this example by thinking about the sit-
uation in which the natural frequency w equals the angular frequency of
one of the potential Fourier components of the signal—i.e., an integer,
in this case.

In case w is an even integer, the expression for b is indeterminate
since both numerator and denominator are zero. However, in this case
the function z, = 1 — cos(wt) already satisfies z,(7) = 0, so we can
(and must!) take b = 0. Thus z, is the odd extension of 1 — cos(wt).
In this case, however, notice that this is not the only periodic solution;
indeed, in this case all solutions are periodic, since the general solution
is (writing w = 2k)

xp + c1 cos(2kt) + co sin(2kt)
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and all these are periodic of period 27.

In case w is an odd integer, w = 2k + 1, there are no periodic solu-
tions; the system is in resonance with the Fourier mode sin((2k + 1)t)
present in the signal. We can’t solve for the constant b; the zero in
its denominator is not canceled by a zero in its numerator. It is not
hard to write down a particular solution in this case too, using the
Resonance Exponential Response Formula, Section [14]

We have used the undamped harmonic oscillator for this example,
but the same methods work in the presence of damping. In that case it
is much easier to use the complex form of the Fourier series (Section 20.6]
below) since the denominator in the Exponential Response Formula is
no longer real.

20.6. Complex Fourier series. With all the sines and cosines in the
Fourier series, there must be a complex exponential expression for it.
There is, and it looks like this:

(7) f0) =3 e

n=—0oo

The power and convenience we have come to appreciate in the com-
plex exponential is at work here too, making computations much eas-
ier. Complex Fourier series are illustrated in the Mathlet Fourier
Coefficients: Complex with Sound.

To obtain an integral expression for one of these coefficients, say c,,,
the first step is to multiply the expression by e~ and integrate:

(8) / e ™dt =" ¢, / ettt

Now
27 ifm=n
" i(n—m)t 4 __ ) 7r
/ € dt = 6z(nfm)t .
- — | =0 ifm#n,
iln—m)|__

The top case holds because then the integrand is the constant function
1. The second case follows from e!™~™7™ = (—1)n=m = ¢iln=m)(=m)
Thus only one term in is nonzero, and we conclude that

(9) Cm = % /7; f(t)e ™ dt
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This works perfectly well even if f(¢) is complex valued. When f(t)

is in fact real valued, so that f(t) = f(¢), @ implies first that ¢ is
real; it’s the average value of f(t), that is, in the older notation for
Fourier coefficients, ¢y = ag/2. Also, ¢_,, = ¢, because

1 [7 . 1 [™— .
_ —z(—n)t — nt —
Con = 5 /_7T f(t)e dt o /_7r f(t)e™dt =¢,.

Since also e = et the nth and (—n)th terms in the sum (7)) are
conjugate to each other. We will group them together. The numbers
will come out nicely if we choose to write

(10) cn = (a, —ib,)/2
with a,, and b, real. Then c_,, = (a, + ib,)/2, and we compute that
cne™ + c_pe ™ = 2Re (c,e™) = a, cos(nt) + b, sin(nt).

(I told you the numbers would work out well, didn’t I?) The series
then becomes the usual series

f@):E?—%}:(anamOw)+bn$nUwD.

Moreover, taking real and imaginary parts of the integral @ (and
continuing to assume f(t) is real valued) we get the usual formulas

am:%/iﬂwwwmﬁ, bm:liﬂﬂmwmﬁ

™



