
63

15. Natural frequency and damping ratio

There is a standard, and useful, normalization of the second order
homogeneous linear constant coefficient ODE

mẍ+ bẋ+ kx = 0

under the assumption that both the “mass” m and the “spring con-
stant” k are positive. It is illustrated in the Mathlet Damping Ratio.

In the absence of a damping term, the ratio k/m would be the square
of the angular frequency of a solution, so we will write k/m = ω2

n with
ωn > 0, and call ωn the natural angular frequency of the system.

Divide the equation through by m: ẍ + (b/m)ẋ + ω2
nx = 0. Critical

damping occurs when the coefficient of ẋ is 2ωn. The damping ratio ζ
is the ratio of b/m to the critical damping constant: ζ = (b/m)/(2ωn).
The ODE then has the form

(1) ẍ+ 2ζωnẋ+ ω2
nx = 0

Note that if x has dimensions of cm and t of sec, then ωn had dimen-
sions sec−1, and the damping ratio ζ is “dimensionless.” This implies
that it is a number which is the same no matter what units of distance
or time are chosen. Critical damping occurs precisely when ζ = 1: then
the characteristic polynomial has a repeated root: p(s) = (s+ ωn)2.

In general the characteristic polynomial is s2 + 2ζωns + ω2
n, and it

has as roots

−ζωn ±
√
ζ2ω2

n − ω2
n = ωn(−ζ ±

√
ζ2 − 1).

These are real when |ζ| ≥ 1, equal when ζ = ±1, and nonreal when
|ζ| < 1. When |ζ| ≤ 1, the roots are

−ζωn ± iωd
where

(2) ωd =
√

1− ζ2 ωn

is the damped angular frequency of the system. Recall that if r1 and
r2 are the roots of the quadratic s2 + bs+ c then r1r2 = c and r1 + r2 =
−b. In our case, the roots are complex conjugates, so their product is
the square of their modulus, which is thus ωn. Their sum is twice their
common real part, which is thus −ζωn. The real part of a complex
number z is |z| cos(Arg(z)), so we find that the arguments of the roots
are ±θ, where −ζ = cos θ. Note that the presence of a damping term
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decreases the frequency of a solution to the undamped equation—the
natural frequency ωn—by the factor

√
1− ζ2. The general solution is

(3) x = Ae−ζωnt cos(ωdt− φ)

Suppose we have such a system, but don’t know the values of ωn or
ζ. At least when the system is underdamped, we can discover them by
a couple of simple measurements of the system response. Let’s displace
the mass and watch it vibrate freely. If the mass oscillates, we are in
the underdamped case.

We can find ωd by measuring the times at which x achieves its max-
ima. These occur when the derivative vanishes, and

ẋ = Ae−ζωnt (−ζωn cos(ωdt− φ)− ωd sin(ωdt− φ)) .

The factor in parentheses is sinusoidal with angular frequency ωd, so
successive zeros are separated from each other by a time lapse of π/ωd.
If t1 and t2 are the times of neighboring maxima of x (which occur at
every other extremum) then t2− t1 = 2π/ωd, so we have discovered the
damped natural frequency:

(4) ωd =
2π

t2 − t1
.

Here are two ways to measure the damping ratio ζ.

1. We can measure the ratio of the value of x at two successive maxima.
Write x1 = x(t1) and x2 = x(t2). The difference of their natural
logarithms is the logarithmic decrement:

∆ = ln x1 − lnx2 = ln

(
x1

x2

)
.

Then

x2 = e−∆x1.

The logarithmic decrement turns out to depend only on the damping
ratio, and to determine the damping ratio. To see this, note that the
values of cos(ωdt−φ) at two points of time differing by 2π/ωd are equal.
Using (3) we find

x1

x2

=
e−ζωnt1

e−ζωnt2
= eζωn(t2−t1).

Thus, using (4) and (2),

∆ = ln

(
x1

x2

)
= ζωn(t2 − t1) = ζωn

2π

ωd
=

2πζ√
1− ζ2

.
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From the quantities ωd and ∆, which are directly measurable charac-
teristics of the unforced system response, we can calculate the system
parameters ωn and ζ:

(5) ζ =
∆/2π√

1 + (∆/2π)2
, ωn =

ωd√
1− ζ2

=

√
1 +

(
∆

2π

)2

ωd .

2. Another way to determine the damping ratio, at least if it’s rea-
sonably small, is to count the number of cycles it takes for the system
response to decay to half its original amplitude. Write n1/2 for this
number. We know that the amplitude has decayed to half its value at
t = 0 when t = t1/2, where

e−ζωnt1/2 = 1/2

or ζωnt1/2 = ln 2. The pseudoperiod is 2π/ωd, so

2π

ωd
n1/2 = t1/2 =

ln 2

ζωn
or

ζ =
ln 2

2π

ωd
ωn

1

n1/2

.

When ζ is small, ωd/ωn is quite close to 1, and
ln 2

2π
' 0.110. So to a

good approximation

ζ ' 0.11

n1/2

.


