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13. Time invariance

As we have seen, systems can be represented by differential operators.
A system, or a differential operator, is time invariant if it doesn’t
change over time. A general n-th order differential operator has the
form

(1) L = an(t)Dn + · · ·+ a1(t)D + a0(t)I

where each coefficent may depend upon t. It is time invariant pre-
cisely when all the coefficents are constant. In that case we have a
characteristic polynomial p(s), and L = p(D).

The abbreviation LTI refers to the combination of the properties
of linearity—that is, obeying the principle of superposition—and time
invariance. These two properties in combination are very powerful. In
this section we will investigate two implications of the LTI condition.

13.1. Differentiating input and output signals. A basic rule of

differentiation is that if c is constant then
d

dt
(cu) = c

du

dt
; that is, D(cu) =

cDu.

The time invariance of p(D) implies that as operators

(2) Dp(D) = p(D)D.

We can see this directly, using D(cu) = cDu:

D(anD
n + · · ·+ a0I) = anD

n+1 + · · ·+ a0D = (anD
n + · · ·+ a0I)D .

In fact the converse holds also; (2) is equivalent to time invariance.

Example. Suppose we know that x(t) is a solution of the equation

Lx = 2
d4x

dt4
+ 3ẋ+ 4x = 2 cos t. (I would not want to try to find x(t)

explicitly, though it an be done by the methods described earlier.)
Problem: Write down a solution of Ly = sin t in terms of x.

Well, up to multiplying by a constant sin t is the derivative of the
right hand side of the original equation. So try y = Dx: LDx =
DLx = D(2 cos t) = −2 sin t. By linearity, we can get to the right
place by multiplying by −1

2
: we can take y = −1

2
Dx = −1

2
ẋ.

13.2. Time-shifting. Let a be a constant and f(t) a function. Define
a new function fa(t) by shifting the graph of f(t) to the right by a
units:

(3) fa(t) = f(t− a)
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For example, sinπ(t) = cos(t). In terms of the language of signals, the
signal fa(t) is just f(t) but delayed by a time units.

Here is the meaning of time invariance:

If a system doesn’t change with time, then the system
response to a signal which has been delayed by a seconds
is just the a-second delay of the system response to the
original signal.

In terms of operators, we can say: for an LTI operator L,

(Lx)a = L(xa)

Example. Let’s solve the previous example using this principle. We
have sin t = cos(t− π/2), so we can take y = 1

2
x(t− π/2).

Can you reconcile the two expressions we now have for y?
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14. The exponential shift law

This section explains a method by which an LTI equation with input
signal of the form ertq(t) can be replaced by a simpler equation in which
the input signal is just q(t).

14.1. Exponential shift. The calculation (10.1)

(1) p(D)ert = p(r)ert

extends to a formula for the effect of the operator p(D) on a product
of the form ertu, where u is a general function. This is useful in solving
p(D)x = f(t) when the input signal is of the form f(t) = ertq(t).

The formula arises from the product rule for differentiation, which
can be written in terms of operators as

D(vu) = v Du+ (Dv)u.

If we take v = ert this becomes

D(ertu) = ertDu+ rertu = ert(Du+ ru) .

Using the notation I for the identity operator, we can write this as

(2) D(ertu) = ert(D + rI)u.

If we apply D to this equation again,

D2(ertu) = D(ert(D + rI)u) = ert(D + rI)2u ,

where in the second step we have applied (2) with u replaced by (D +
rI)u. This generalizes to

Dk(ertu) = ert(D + rI)ku.

The final step is to take a linear combination of Dk’s, to form a
general LTI operator p(D). The result is the

Exponential Shift Law:

(3) p(D)(ertu) = ertp(D + rI)u

The effect is that we have pulled the exponential outside the differential
operator, at the expense of changing the operator in a specified way.
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14.2. Product signals. We can exploit this effect to solve equations
of the form

p(D)x = ertq(t) ,

by a version of the method of variation of parameter: write x = ertu,
apply p(D), use (3) to pull the exponential out to the left of the op-
erator, and then cancel the exponential from both sides. The result
is

p(D + rI)u = q(t) ,

a new LTI ODE for the function u, one from which the exponential
factor has been eliminated.

Example 14.2.1. Find a particular solution to ẍ+ ẋ+ x = t2e3t.

With p(s) = s2 + s+ 1 and x = e3tu, we have

ẍ+ ẋ+ x = p(D)x = p(D)(e3tu) = e3tp(D + 3I)u .

Set this equal to t2e3t and cancel the exponential, to find

p(D + 3I)u = t2

This is a good target for the method of undetermined coefficients (Sec-
tion 11). The first step is to compute

p(s+ 3) = (s+ 3)2 + (s+ 3) + 1 = s2 + 7s+ 13 ,

so we have ü + 7u̇ + 13u = t2. There is a solution of the form up =
at2 + bt+ c, and we find it is

up = (1/13)t2 − (14/132)t+ (85/133) .

Thus a particular solution for the original problem is

xp = e3t((1/13)t2 − (14/132)t+ (85/133)) .

Example 14.2.2. Find a particular solution to ẋ+ x = te−t sin t.

The signal is the imaginary part of te(−1+i)t, so, following the method
of Section 10, we consider the ODE

ż + z = te(−1+i)t .

If we can find a solution zp for this, then xp = Im zp will be a solution
to the original problem.

We will look for z of the form e(−1+i)tu. The Exponential Shift Law
(3) with p(s) = s+ 1 gives

ż + z = (D + I)(e(−1+i)tu) = e(−1+i)t((D + (−1 + i)I) + I)u

= e(−1+i)t(D + iI)u.
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When we set this equal to the right hand side we can cancel the expo-
nential:

(D + iI)u = t

or u̇ + iu = t. While this is now an ODE with complex coefficients,
it’s easy to solve by the method of undetermined coefficients: there
is a solution of the form up = at + b. Computing the coefficients,
up = −it+ 1; so zp = e(−1+i)t(−it+ 1).

Finally, extract the imaginary part to obtain xp:

zp = e−t(cos t+ i sin t)(−it+ 1)

has imaginary part

xp = e−t(−t cos t+ sin t).

14.3. Summary. The work of this section and the previous two can
be summarized as follows: Among the responses by an LTI system to a
signal which is polynomial times exponential (or a linear combination
of such) there is always one which is again a linear combination of
functions which are polynomial times exponential. By the magic of the
complex exponential, sinusoidal factors are included in this.


