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12. RESONANCE

12.1. Resonance. When you swing your kid sister the key is to get
in synch with the natural frequency of the swing. This is called “reso-
nance.” We might model the swing-and-sister setup by a sinusoidally
driven harmonic oscillator, & + w? = Acos(wt). In (L0J9) we saw that
this has a periodic solution

cos(wt)
1 x,=A—-=
( ) p wTQL o wg
provided that w # w,. Resonance occurs when the two frequencies
coincide. The model isn’t very accurate; there are no bounded solutions

to our equation when w,, = w. But we neglected damping. ...

From a more sophisticated perspective, resonance occurs in the equa-
tion p(D)x = €™ when r is a root of the characteristic polynomial p(s);
for then the denominator in the Exponential Response Formula van-
ishes.

This occurs in the complex replacement for the harmonic oscilla-
tor, 2 + w2z = Ae™* when w = 4w, and acconts for the vanishing
denominator in ([1]).

It also occurs if we try to use the ERF to solve © + 2 = e~t. The
Exponential Response Formula proposes a solution z, = e~*/p(—1),
but p(—1) = 0 so this fails. There is no solution of the form ce'.

Here is a way to solve p(D)z = e when this happens. The ERF
came from the calculation

p(D)e" = p(r)e™,
which is valid whether or not p(r) = 0. We will take this expression
and differentiate it with respect to r, keeping t constant. The result,
using the product rule and the fact that partial derivatives commute,
is

p(D)te™ = p/(r)e™ + p(r)te™

If p(r) = 0 this simplifies to
(2) p(D)te™ = p/(r)e’.
Now if p/(r) # 0 we can divide through by it and see:

The Resonant Exponential Response Formula: If p(r) = 0 then
a solution to p(D)x = ae™ is given by

te?“t

(3) T, =a
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provided that p'(r) # 0.
In our example above, p(s) = s+ 1 and r = 1, so p/(r) = 1 and
x, = te”" is a solution.

This example exhibits a characteristic feature of resonance: the solu-
tions grow faster than you might expect. The characteristic polynomial
leads you to expect a solution of the order of e~. In fact the solution
is ¢ times this. It still decays to zero as t grows, but not as fast as e™*
does.

Example 12.1.1. Let’s return to the harmonic oscillator represented
by & + w2z, or by the operator D? + w2l = p(D), driven by the signal
Acos(wt). This ODE is the real part of

P4 wlz = Ae™t,
so the Exponential Response Formula gives us the periodic solution

wnt

This is fine unless w = w,, in which case p(iw,) = (iw,)? + w? = 0; so
the amplitude of the proposed sinusoidal response should be infinite.
The fact is that there is no periodic system response; the system is in
resonance with the signal.

To circumvent this problem, let’s apply the Resonance Exponential
Response Formula: since p(s) = s*+w?, p'(s) = 2s and p/(iw,,) = 2iwy,
SO

teiwnt

20w,

zp=A

The real part is

T, = tsin(wpt) .

Wn
The general solution is thus
A
x = 2—t sin(wpt) 4+ bcos(w,t — @) .

Wn

In words, all solutions oscillate with pseudoperiod 27 /w,, and grow in
amplitude like At/(2w,,). When w, is large—high frequency—this rate
of growth is small.
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12.2. Higher order resonance. It may happen that both p(r) = 0
and p'(r) = 0. The general picture is this: Suppose that k is such
that p@)(r) = 0 for j < k and p*¥)(r) # 0. Then p(D)z = ae™ has as
solution

tkert
4 Tp=AQ—Fr -
@ TopW(r)

For instance, if w = wp = 0 in Example(12.1.1} p'(iw) = 0. The signal
is now just the constant function a, and the ODE is & = a. Integrating

twice gives z,, = at?/2 as a solution, which is a special case of , since
e =1 and p’(s) = 2.

You can see in the same way we saw the Resonant Exponential
Response Formula. So take and differentiate again with respect to
7

p<D)t26rt _ p//(,r)ert + p/(T)tGTt
If p’(r) = 0, the second term drops out and if we suppose p”(r) # 0
and divide through by it we get

(%)=

which the case k£ = 2 of . Continuing, we get to higher values of k
as well.




