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12. Resonance

12.1. Resonance. When you swing your kid sister the key is to get
in synch with the natural frequency of the swing. This is called “reso-
nance.” We might model the swing-and-sister setup by a sinusoidally
driven harmonic oscillator, ẍ + ω2

n = A cos(ωt). In (10.9) we saw that
this has a periodic solution

(1) xp = A
cos(ωt)

ω2
n − ω2

provided that ω 6= ωn. Resonance occurs when the two frequencies
coincide. The model isn’t very accurate; there are no bounded solutions
to our equation when ωn = ω. But we neglected damping. . . .

From a more sophisticated perspective, resonance occurs in the equa-
tion p(D)x = ert when r is a root of the characteristic polynomial p(s);
for then the denominator in the Exponential Response Formula van-
ishes.

This occurs in the complex replacement for the harmonic oscilla-
tor, z̈ + ω2

nz = Aeiωt when ω = ±ωn, and acconts for the vanishing
denominator in (1).

It also occurs if we try to use the ERF to solve ẋ + x = e−t. The
Exponential Response Formula proposes a solution xp = e−t/p(−1),
but p(−1) = 0 so this fails. There is no solution of the form cert.

Here is a way to solve p(D)x = ert when this happens. The ERF
came from the calculation

p(D)ert = p(r)ert,

which is valid whether or not p(r) = 0. We will take this expression
and differentiate it with respect to r, keeping t constant. The result,
using the product rule and the fact that partial derivatives commute,
is

p(D)tert = p′(r)ert + p(r)tert

If p(r) = 0 this simplifies to

(2) p(D)tert = p′(r)ert .

Now if p′(r) 6= 0 we can divide through by it and see:

The Resonant Exponential Response Formula: If p(r) = 0 then
a solution to p(D)x = aert is given by

(3) xp = a
tert

p′(r)
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provided that p′(r) 6= 0.

In our example above, p(s) = s + 1 and r = 1, so p′(r) = 1 and
xp = te−t is a solution.

This example exhibits a characteristic feature of resonance: the solu-
tions grow faster than you might expect. The characteristic polynomial
leads you to expect a solution of the order of e−t. In fact the solution
is t times this. It still decays to zero as t grows, but not as fast as e−t

does.

Example 12.1.1. Let’s return to the harmonic oscillator represented
by ẍ+ ω2

nx, or by the operator D2 + ω2
nI = p(D), driven by the signal

A cos(ωt). This ODE is the real part of

z̈ + ω2
nz = Aeiωt ,

so the Exponential Response Formula gives us the periodic solution

zp = A
eiωnt

p(iω)
.

This is fine unless ω = ωn, in which case p(iωn) = (iωn)2 + ω2
n = 0; so

the amplitude of the proposed sinusoidal response should be infinite.
The fact is that there is no periodic system response; the system is in
resonance with the signal.

To circumvent this problem, let’s apply the Resonance Exponential
Response Formula: since p(s) = s2 +ω2

n, p′(s) = 2s and p′(iωn) = 2iω0,
so

zp = A
teiωnt

2iωn
.

The real part is

xp =
A

2ωn
t sin(ωnt) .

The general solution is thus

x =
A

2ωn
t sin(ωnt) + b cos(ωnt− φ) .

In words, all solutions oscillate with pseudoperiod 2π/ωn, and grow in
amplitude like At/(2ωn). When ωn is large—high frequency—this rate
of growth is small.
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12.2. Higher order resonance. It may happen that both p(r) = 0
and p′(r) = 0. The general picture is this: Suppose that k is such
that p(j)(r) = 0 for j < k and p(k)(r) 6= 0. Then p(D)x = aert has as
solution

(4) xp = a
tkert

p(k)(r)
.

For instance, if ω = ω0 = 0 in Example 12.1.1, p′(iω) = 0. The signal
is now just the constant function a, and the ODE is ẍ = a. Integrating
twice gives xp = at2/2 as a solution, which is a special case of (4), since
ert = 1 and p′′(s) = 2.

You can see (4) in the same way we saw the Resonant Exponential
Response Formula. So take (2) and differentiate again with respect to
r:

p(D)t2ert = p′′(r)ert + p′(r)tert

If p′(r) = 0, the second term drops out and if we suppose p′′(r) 6= 0
and divide through by it we get

p(D)

(
t2ert

p′(r)

)
= ert

which the case k = 2 of (4). Continuing, we get to higher values of k
as well.


