### 18.03 Practice Problems on Fourier Series

## For definitions and conventions, see overleaf.

1. What is the Fourier series for $1+\sin ^{2} t$ ?
2. Graph the function $f(t)$ which is even, periodic of period $2 \pi$, and such that $f(t)=2$ for $0<t<\frac{\pi}{2}$ and $f(t)=0$ for $\frac{\pi}{2}<t<\pi$. Is the function even, odd, or neither?
Find its Fourier series in two ways:
(a) Use parity if possible to see that some coefficients are zero. Then use the integral expressions for the remaining Fourier coefficients.
(b) Express $f(t)$ in terms of $\mathrm{sq}(t)$, substitute the Fourier series for $\mathrm{sq}(t)$ and use some trig identities.
3. Graph the function $h(t)$ which is odd and periodic of period $2 \pi$ and such that $h(t)=t$ for $0<t<\frac{\pi}{2}$ and $h(t)=\pi-t$ for $\frac{\pi}{2}<t<\pi$. What is its average value? Observe that $h^{\prime}(t)=f(t)-1$, where $f(t)$ is the function studied in Problem 2.

Use these observations to find its Fourier series.
4. Explain why any function $F(x)$ is a sum of an even function and an odd function in just one way. Hint: The function $F_{+}(x)$ defined as $F_{+}(x)=\frac{F(x)+F(-x)}{2}$ is even.
What is the even part of $e^{x}$ ? What is the odd part?

## Fourier series facts and conventions

Suppose that $f(t)$ a periodic function for which $2 \pi$ is a period (so that $f(t+2 \pi)=f(t)$ ). We will assume that $f(t)$ is piecewise continuous and that

$$
f(a)=\frac{f(a-)+f(a+)}{2}
$$

at points of discontinuity.
Then there is exactly one sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$, such that for all $t$ :

$$
\begin{aligned}
f(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t) \\
& =\frac{a_{0}}{2}+a_{1} \cos (t)+a_{2} \cos (2 t)+\cdots+b_{1} \sin (t)+b_{2} \sin (2 t)+\cdots
\end{aligned}
$$

This expansion is called the Fourier series for $f(t)$, and the numbers from this sequence are defined to be the Fourier coefficients of $f(t)$ (regarded as a function of period $2 \pi$ ).
The Fourier coefficients of such a function $f(t)$ can be calculated directly by using integral formulas

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t
$$

The standard squarewave $s q(t)$ is defined to be the odd function $\mathrm{sq}(t)$ of period $2 \pi$ such that $\mathrm{sq}(t)=1$ for $0<t<\pi$ and $\mathrm{sq}(0)=\mathrm{sq}(\pi)=0$. Its Fourier series is

$$
\mathrm{sq}(t)=\frac{4}{\pi}\left(\sin (t)+\frac{\sin (3 t)}{3}+\frac{\sin (5 t)}{5}+\cdots\right)=\frac{4}{\pi} \sum_{k \text { odd }} \frac{\sin (k t)}{k} .
$$

