APPLIED MATHEMATICS COLLOQUIUM

Over-coming fluid-structure instabilities for incompressible flows and light bodies

William Henshaw (Rensselaer Polytechnic Institute)

Abstract: The added-mass instability has, for decades, plagued partitioned fluid-structure interaction (FSI) simulations of incompressible flows coupled to light solids and structures. Many current approaches require tens or hundreds of expensive sub-iterations per time-step. In this talk some new stable partitioned algorithms are described for coupling incompressible flows with (1) compressible elastic bulk solids, (2) thin structural beams and (3) rigid bodies. These added-mass partitioned (AMP) schemes require no sub-iterations, can be made fully second- or higher-order accurate, and remain stable even in the presence of strong added-mass effects. These schemes are implemented using moving and deforming overlapping grids with the Overture framework.

This is joint with the Numerical Methods for Partial Differential Equations Seminar

Wednesday September 21, 2016 4:30 PM Room 2-105

Applied Math Colloquium: <u>http://www-math.mit.edu/amc/fall16/</u> Math Department: <u>http://www-math.mit.edu</u>

Massachusetts Institute of Technology Department of Mathematics Cambridge, MA 02139

