Joint

APPLIED MATHEMATICS COLLOQUIUM
and

THEORY OF COMPUTATION COLLOQUIUM

FIXED POINT (RECURSION) THEOREM AND APERIODIC TILE SETS

ALEXANDER SHEN
Institute of Problems of Information Transmission,
Moscow

Abstract

: A tile is a square with colored sides. The classical Berger theorem says that there exists a finite set T of tiles that allows only aperiodic tilings (one can place a copy of a tile from T in each cell of the cell paper so that all colors match, but only in an aperiodic way).

There are many proofs of this theorem; most of them use rather subtle geometric construction. We present another construction based on the Kleene fixed point (recursion) theorem. It is not economical in terms of number of tiles/colors, but rather is flexible and allows us to get aperiodic tile sets with additional properties.

Some familiarity with theory of computation (especially the recursion theorem and time-space diagrams of Turing machines) would be helpful.

MONDAY, SEPTEMBER 24, 2007
2:30 PM
Building 2, Room 105
Refreshments at 3:30 PM in Building 2, Room 349
(Applied Math Common Room)

Applied Math Colloquium: http://www-math.mit.edu/amc/fall07
Math Department: http://www-math.mit.edu

